Suppr超能文献

ENIGMA 中的荟萃分析方法:广泛性焦虑障碍工作组的经验。

Mega-analysis methods in ENIGMA: The experience of the generalized anxiety disorder working group.

机构信息

National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, Maryland, USA.

Leiden University Medical Center, Department of Psychiatry, Leiden, The Netherlands.

出版信息

Hum Brain Mapp. 2022 Jan;43(1):255-277. doi: 10.1002/hbm.25096. Epub 2020 Jun 29.

Abstract

The ENIGMA group on Generalized Anxiety Disorder (ENIGMA-Anxiety/GAD) is part of a broader effort to investigate anxiety disorders using imaging and genetic data across multiple sites worldwide. The group is actively conducting a mega-analysis of a large number of brain structural scans. In this process, the group was confronted with many methodological challenges related to study planning and implementation, between-country transfer of subject-level data, quality control of a considerable amount of imaging data, and choices related to statistical methods and efficient use of resources. This report summarizes the background information and rationale for the various methodological decisions, as well as the approach taken to implement them. The goal is to document the approach and help guide other research groups working with large brain imaging data sets as they develop their own analytic pipelines for mega-analyses.

摘要

广泛性焦虑障碍的 ENIGMA 组(ENIGMA-Anxiety/GAD)是利用影像和遗传数据在全球多个地点对焦虑障碍进行研究的更大努力的一部分。该小组正在积极对大量大脑结构扫描进行 mega 分析。在这个过程中,该小组面临着许多与研究规划和实施、国家间受试者水平数据传输、相当数量的影像数据质量控制以及与统计方法和资源有效利用相关的选择有关的方法学挑战。本报告总结了各种方法学决策的背景信息和基本原理,以及实施这些决策的方法。目的是记录该方法并帮助指导其他使用大型脑影像数据集的研究小组在为 mega 分析开发自己的分析管道时提供参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d728/8675407/f63c48cbc861/HBM-43-255-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验