Suppr超能文献

面向医学与健康信息学专业学生的人工智能教育与工具:系统综述

Artificial Intelligence Education and Tools for Medical and Health Informatics Students: Systematic Review.

作者信息

Sapci A Hasan, Sapci H Aylin

机构信息

Adelphi University, Garden City, NY, United States.

出版信息

JMIR Med Educ. 2020 Jun 30;6(1):e19285. doi: 10.2196/19285.

Abstract

BACKGROUND

The use of artificial intelligence (AI) in medicine will generate numerous application possibilities to improve patient care, provide real-time data analytics, and enable continuous patient monitoring. Clinicians and health informaticians should become familiar with machine learning and deep learning. Additionally, they should have a strong background in data analytics and data visualization to use, evaluate, and develop AI applications in clinical practice.

OBJECTIVE

The main objective of this study was to evaluate the current state of AI training and the use of AI tools to enhance the learning experience.

METHODS

A comprehensive systematic review was conducted to analyze the use of AI in medical and health informatics education, and to evaluate existing AI training practices. PRISMA-P (Preferred Reporting Items for Systematic Reviews and Meta-Analysis Protocols) guidelines were followed. The studies that focused on the use of AI tools to enhance medical education and the studies that investigated teaching AI as a new competency were categorized separately to evaluate recent developments.

RESULTS

This systematic review revealed that recent publications recommend the integration of AI training into medical and health informatics curricula.

CONCLUSIONS

To the best of our knowledge, this is the first systematic review exploring the current state of AI education in both medicine and health informatics. Since AI curricula have not been standardized and competencies have not been determined, a framework for specialized AI training in medical and health informatics education is proposed.

摘要

背景

人工智能(AI)在医学中的应用将产生众多改善患者护理、提供实时数据分析以及实现患者持续监测的应用可能性。临床医生和健康信息专家应熟悉机器学习和深度学习。此外,他们应具备强大的数据分析和数据可视化背景,以便在临床实践中使用、评估和开发人工智能应用程序。

目的

本研究的主要目的是评估人工智能培训的现状以及使用人工智能工具来提升学习体验。

方法

进行了一项全面的系统评价,以分析人工智能在医学和健康信息学教育中的应用,并评估现有的人工智能培训实践。遵循PRISMA-P(系统评价和Meta分析方案的首选报告项目)指南。分别对专注于使用人工智能工具来提升医学教育的研究以及将人工智能作为一项新能力进行教学的研究进行分类,以评估近期的发展情况。

结果

这项系统评价表明,近期的出版物建议将人工智能培训纳入医学和健康信息学课程。

结论

据我们所知,这是首次探索医学和健康信息学中人工智能教育现状的系统评价。由于人工智能课程尚未标准化且能力尚未确定,因此提出了一个医学和健康信息学教育中专门人工智能培训的框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e01/7367541/9f4dfeddb3c3/mededu_v6i1e19285_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验