Suppr超能文献

全新世全球平均地表温度:多方法重建途径。

Holocene global mean surface temperature, a multi-method reconstruction approach.

机构信息

Northern Arizona University, School of Earth and Sustainability, Flagstaff, AZ, 86011, USA.

University of Bern, Institute of Geography and Oeschger Centre for Climate Change Research, Bern, 3012, Switzerland.

出版信息

Sci Data. 2020 Jun 30;7(1):201. doi: 10.1038/s41597-020-0530-7.

Abstract

An extensive new multi-proxy database of paleo-temperature time series (Temperature 12k) enables a more robust analysis of global mean surface temperature (GMST) and associated uncertainties than was previously available. We applied five different statistical methods to reconstruct the GMST of the past 12,000 years (Holocene). Each method used different approaches to averaging the globally distributed time series and to characterizing various sources of uncertainty, including proxy temperature, chronology and methodological choices. The results were aggregated to generate a multi-method ensemble of plausible GMST and latitudinal-zone temperature reconstructions with a realistic range of uncertainties. The warmest 200-year-long interval took place around 6500 years ago when GMST was 0.7 °C (0.3, 1.8) warmer than the 19 Century (median, 5, 95 percentiles). Following the Holocene global thermal maximum, GMST cooled at an average rate -0.08 °C per 1000 years (-0.24, -0.05). The multi-method ensembles and the code used to generate them highlight the utility of the Temperature 12k database, and they are now available for future use by studies aimed at understanding Holocene evolution of the Earth system.

摘要

一个广泛的新的多代理古温度时间序列数据库(Temperature 12k)使我们能够比以前更有效地分析全球平均表面温度(GMST)及其相关不确定性。我们应用了五种不同的统计方法来重建过去 12000 年(全新世)的 GMST。每种方法都使用不同的方法来平均全球分布的时间序列,并描述各种不确定性来源,包括代理温度、年代学和方法选择。结果被汇总以生成具有现实不确定性范围的 GMST 和纬向温度重建的多方法集合体。最温暖的 200 年长的间隔发生在大约 6500 年前,当时 GMST 比 19 世纪(中位数,5%和 95%分位数)高 0.7°C(0.3°C,1.8°C)。在全新世全球热最大值之后,GMST 以平均每 1000 年-0.08°C 的速度冷却(-0.24°C,-0.05°C)。多方法集合体以及生成它们的代码突出了 Temperature 12k 数据库的实用性,它们现在可供未来旨在了解地球系统全新世演化的研究使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f84a/7327079/c3a0c4198e28/41597_2020_530_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验