Suppr超能文献

基于长短期记忆网络(LSTM)和自回归整合移动平均模型(ARIMA)预测与分析全球平均气温趋势

Forecasting and analysing global average temperature trends based on LSTM and ARIMA models.

作者信息

Tan Can, Zhong Junyi, Yang Dajun, Huang Weiming

机构信息

School of Management, Guangdong Ocean University, Zhanjiang City, Guangdong Province, China.

School of Business, Shandong University, Weihai City, Shandong Province, China.

出版信息

PLoS One. 2025 Sep 3;20(9):e0330645. doi: 10.1371/journal.pone.0330645. eCollection 2025.

Abstract

Previous studies have demonstrated a significant correlation between global average temperature change trends and greenhouse gases, and employed various prediction models. However, the potential of the combination of the LSTM and ARIMA models for temperature forecasting has not been fully explored, especially in terms of enhancing prediction accuracy. Based on the hypothesis that COVID-19 has affected the global average temperature, this study utilizes global average temperature data from 1880 to 2022. We combine the LSTM model, which excels at capturing long-term dependencies, with the ARIMA model, known for its effectiveness in handling linear time series data, to predict the global mean temperature. This combination compensated for the limitations of individual models, providing a more accurate and comprehensive temperature forecast. Our findings reveal that the early trend of global temperature rise is significant, yet the implementation delay leads to severe issues. Moreover, COVID-19 has indirectly reduced greenhouse gas emissions, slowing global warming. Additionally, we find that the correlation between longitude and mean temperature is weak, while the correlation between latitude and temperature is strongly negative. This study offers valuable insights and provides a reliable prediction method for ecological environment governance and the formulation of economic construction policies.

摘要

以往的研究已经证明全球平均气温变化趋势与温室气体之间存在显著相关性,并采用了各种预测模型。然而,长短期记忆(LSTM)模型和自回归整合移动平均(ARIMA)模型相结合用于温度预测的潜力尚未得到充分探索,特别是在提高预测准确性方面。基于新冠疫情影响了全球平均气温这一假设,本研究利用了1880年至2022年的全球平均气温数据。我们将擅长捕捉长期依赖性的LSTM模型与以处理线性时间序列数据有效性而闻名的ARIMA模型相结合,以预测全球平均气温。这种结合弥补了单个模型的局限性,提供了更准确、更全面的温度预测。我们的研究结果表明,全球气温上升的早期趋势显著,但实施延迟会导致严重问题。此外,新冠疫情间接减少了温室气体排放,减缓了全球变暖。此外,我们发现经度与平均气温之间的相关性较弱,而纬度与气温之间的相关性则呈强烈负相关。本研究提供了有价值的见解,并为生态环境治理和经济建设政策的制定提供了可靠的预测方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1925/12407413/0bcadf0ae24b/pone.0330645.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验