Suppr超能文献

一种用于光谱域光学相干断层扫描图像中视网膜内囊肿自动分割的无监督分层方法。

An unsupervised hierarchical approach for automatic intra-retinal cyst segmentation in spectral-domain optical coherence tomography images.

作者信息

Ganjee Razieh, Ebrahimi Moghaddam Mohsen, Nourinia Ramin

机构信息

The Faculty of Computer Science and Engineering, Shahid Beheshti University G.C, Tehran, Iran.

Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

出版信息

Med Phys. 2020 Oct;47(10):4872-4884. doi: 10.1002/mp.14361. Epub 2020 Aug 8.

Abstract

PURPOSE

Intra-retinal cyst (IRC) is a symptom of macular disorders that occurs due to retinal blood vessel damage and fluid leakage to the macula area. These abnormalities are efficiently visualized using optical coherence tomography (OCT) imaging. These patients need to be regularly monitored for the presence and changes of IRC regions. Thus, automatic segmentation of IRCs can be beneficial to investigate disease progression.

METHODS

In this study, automatic IRC segmentation is accomplished by building three different masks in three unsupervised segmentation levels of a hierarchical framework. In the first level, the ROI-mask (R-mask) is built, and the retina area is cropped based on this mask. In the second level, the prune-mask (P-mask) is built, and the searching space is significantly reduced toward the target objects using this mask; and finally in the third level, by applying the Markov random field (MRF) model and employing intensity and contextual information, the cyst mask (C-mask) is extracted.

RESULTS

The proposed method is evaluated on three datasets including OPTIMA, UMN, and KERMANY datasets. The experimental results showed that the proposed method is effective with a mean dice coefficient rate of 0.74, 0.75 and 0.79 by the intersection of ground truths on the OPTIMA, UMN and KERMANY datasets, respectively.

CONCLUSION

The proposed method outperforms the state-of-the-art methods on the OPTIMA and UMN datasets while achieving comparable results to the most recently proposed method on the KERMANY dataset.

摘要

目的

视网膜内囊肿(IRC)是黄斑疾病的一种症状,它是由于视网膜血管损伤以及液体渗漏至黄斑区而产生的。利用光学相干断层扫描(OCT)成像能够有效地观察到这些异常情况。这些患者需要定期接受监测,以了解IRC区域的存在情况及其变化。因此,IRC的自动分割有助于研究疾病的进展。

方法

在本研究中,通过在一个分层框架的三个无监督分割级别构建三种不同的掩码来实现IRC的自动分割。在第一级别,构建感兴趣区域掩码(R掩码),并基于此掩码裁剪视网膜区域。在第二级别,构建修剪掩码(P掩码),利用此掩码朝着目标对象显著缩小搜索空间;最后在第三级别,通过应用马尔可夫随机场(MRF)模型并利用强度和上下文信息,提取囊肿掩码(C掩码)。

结果

所提出的方法在包括OPTIMA、UMN和KERMANY数据集在内的三个数据集上进行了评估。实验结果表明,所提出的方法是有效的,在OPTIMA、UMN和KERMANY数据集上,通过与真实值的交集分别得到的平均骰子系数率为0.74、0.75和0.79。

结论

所提出的方法在OPTIMA和UMN数据集上优于现有方法,同时在KERMANY数据集上取得了与最近提出的方法相当的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验