Suppr超能文献

光学相干断层扫描中的任何分割:用于视网膜生物标志物体积分割的SAM 2

Segment Anything in Optical Coherence Tomography: SAM 2 for Volumetric Segmentation of Retinal Biomarkers.

作者信息

Kulyabin Mikhail, Zhdanov Aleksei, Pershin Andrey, Sokolov Gleb, Nikiforova Anastasia, Ronkin Mikhail, Borisov Vasilii, Maier Andreas

机构信息

Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany.

"VisioMed.AI", Golovinskoe Highway, 8/2A, 125212 Moscow, Russia.

出版信息

Bioengineering (Basel). 2024 Sep 19;11(9):940. doi: 10.3390/bioengineering11090940.

Abstract

Optical coherence tomography (OCT) is a non-invasive imaging technique widely used in ophthalmology for visualizing retinal layers, aiding in the early detection and monitoring of retinal diseases. OCT is useful for detecting diseases such as age-related macular degeneration (AMD) and diabetic macular edema (DME), which affect millions of people globally. Over the past decade, the area of application of artificial intelligence (AI), particularly deep learning (DL), has significantly increased. The number of medical applications is also rising, with solutions from other domains being increasingly applied to OCT. The segmentation of biomarkers is an essential problem that can enhance the quality of retinal disease diagnostics. For 3D OCT scans, AI is beneficial since manual segmentation is very labor-intensive. In this paper, we employ the new SAM 2 and MedSAM 2 for the segmentation of OCT volumes for two open-source datasets, comparing their performance with the traditional U-Net. The model achieved an overall Dice score of 0.913 and 0.902 for macular holes (MH) and intraretinal cysts (IRC) on OIMHS and 0.888 and 0.909 for intraretinal fluid (IRF) and pigment epithelial detachment (PED) on the AROI dataset, respectively.

摘要

光学相干断层扫描(OCT)是一种非侵入性成像技术,在眼科中广泛用于可视化视网膜层,有助于视网膜疾病的早期检测和监测。OCT对于检测年龄相关性黄斑变性(AMD)和糖尿病性黄斑水肿(DME)等疾病很有用,这些疾病在全球影响着数百万人。在过去十年中,人工智能(AI),特别是深度学习(DL)的应用领域显著增加。医学应用的数量也在上升,其他领域的解决方案越来越多地应用于OCT。生物标志物的分割是一个重要问题,可提高视网膜疾病诊断的质量。对于3D OCT扫描,AI很有用,因为手动分割非常耗费人力。在本文中,我们将新的SAM 2和MedSAM 2用于两个开源数据集的OCT体积分割,并将它们的性能与传统的U-Net进行比较。该模型在OIMHS数据集上,黄斑裂孔(MH)和视网膜内囊肿(IRC)的总体Dice分数分别为0.913和0.902,在AROI数据集上,视网膜内液(IRF)和色素上皮脱离(PED)的总体Dice分数分别为0.888和0.909。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验