IEEE J Biomed Health Inform. 2019 Jan;23(1):273-282. doi: 10.1109/JBHI.2018.2793534. Epub 2018 Jan 15.
Automated and accurate segmentation of cystoid structures in optical coherence tomography (OCT) is of interest in the early detection of retinal diseases. It is, however, a challenging task. We propose a novel method for localizing cysts in 3-D OCT volumes. The proposed work is biologically inspired and based on selective enhancement of the cysts, by inducing motion to a given OCT slice. A convolutional neural network is designed to learn a mapping function that combines the result of multiple such motions to produce a probability map for cyst locations in a given slice. The final segmentation of cysts is obtained via simple clustering of the detected cyst locations. The proposed method is evaluated on two public datasets and one private dataset. The public datasets include the one released for the OPTIMA cyst segmentation challenge (OCSC) in MICCAI 2015 and the DME dataset. After training on the OCSC train set, the method achieves a mean dice coefficient (DC) of 0.71 on the OCSC test set. The robustness of the algorithm was examined by cross validation on the DME and AEI (private) datasets and a mean DC values obtained were 0.69 and 0.79, respectively. Overall, the proposed system has the highest performance on all the benchmarks. These results underscore the strengths of the proposed method in handling variations in both data acquisition protocols and scanners.
自动且准确地分割光学相干断层扫描(OCT)中的囊性结构对于视网膜疾病的早期检测很有意义。然而,这是一项具有挑战性的任务。我们提出了一种新的方法,用于定位 3-D OCT 体积中的囊肿。这项工作受到生物启发,通过对给定的 OCT 切片进行运动诱导,选择性地增强囊肿。设计了一个卷积神经网络来学习一个映射函数,该函数结合了多个这样的运动的结果,以生成给定切片中囊肿位置的概率图。通过简单地对检测到的囊肿位置进行聚类,得到最终的囊肿分割。所提出的方法在两个公共数据集和一个私有数据集上进行了评估。公共数据集包括在 2015 年 MICCAI 的 OPTIMA 囊肿分割挑战赛(OCSC)中发布的数据集以及 DME 数据集。在 OCSC 训练集上进行训练后,该方法在 OCSC 测试集上的平均骰子系数(DC)为 0.71。通过在 DME 和 AEI(私有)数据集上进行交叉验证,检验了算法的稳健性,得到的平均 DC 值分别为 0.69 和 0.79。总体而言,该系统在所有基准测试中表现最佳。这些结果强调了所提出的方法在处理数据采集协议和扫描仪的变化方面的优势。