Experimental Nephrology Group, KIM III, Universitätsklinikum Jena, Jena, Germany.
PLoS One. 2020 Jul 2;15(7):e0235530. doi: 10.1371/journal.pone.0235530. eCollection 2020.
Understanding complex mechanisms of human transcriptional regulation remains a major challenge. Classical reporter studies already enabled the discovery of cis-regulatory elements within the non-coding DNA; however, the influence of genomic context and potential interactions are still largely unknown. Using a modified Cas9 activation complex we explore the complexity of renin transcription in its native genomic context.
With the help of genomic editing, we stably tagged the native renin on chromosome 1 with the firefly luciferase and stably integrated a programmable modified Cas9 based trans-activation complex (SAM-complex) by lentiviral transduction into human cells. By delivering five specific guide-RNA homologous to specific promoter regions of renin we were able to guide this SAM-complex to these regions of interest. We measured gene expression and generated and compared computational models.
SAM complexes induced activation of renin in our cells after renin specific guide-RNA had been provided. All possible combinations of the five guides were subjected to model analysis in linear models. Quantifying the prediction error and the calculation of an estimator of the relative quality of the statistical models for our given set of data revealed that a model incorporating interactions in the proximal promoter is the superior model for explanation of the data.
By applying our combined experimental and modelling approach we can show that interactions occur within the selected sequences of the proximal renin promoter region. This combined approach might potentially be useful to investigate other genomic regions. Our findings may help to better understand the transcriptional regulation of human renin.
理解人类转录调控的复杂机制仍然是一个主要挑战。经典的报告基因研究已经能够在非编码 DNA 中发现顺式调控元件;然而,基因组背景的影响和潜在的相互作用在很大程度上仍然未知。我们使用改良的 Cas9 激活复合物来探索肾素转录在其天然基因组环境中的复杂性。
借助基因组编辑,我们用萤火虫荧光素酶稳定标记了染色体 1 上的天然肾素,并通过慢病毒转导将可编程的改良 Cas9 基转激活复合物(SAM 复合物)稳定整合到人类细胞中。通过递呈五个与肾素特定启动子区域同源的特定向导 RNA,我们能够将这个 SAM 复合物引导到这些感兴趣的区域。我们测量了基因表达并生成和比较了计算模型。
在提供了肾素特异性向导 RNA 后,SAM 复合物在我们的细胞中诱导了肾素的激活。对五个向导的所有可能组合进行了线性模型的模型分析。通过量化预测误差并计算给定数据集的统计模型相对质量的估计值,我们发现包含在近端启动子中相互作用的模型是解释数据的最佳模型。
通过应用我们的组合实验和建模方法,我们可以证明相互作用发生在选定的近端肾素启动子区域序列内。这种组合方法可能有助于研究其他基因组区域。我们的发现有助于更好地理解人类肾素的转录调控。