Suppr超能文献

使用电致变色薄膜对生物电势进行无标记光学检测。

Label-free optical detection of bioelectric potentials using electrochromic thin films.

作者信息

Alfonso Felix S, Zhou Yuecheng, Liu Erica, McGuire Allister F, Yang Yang, Kantarci Husniye, Li Dong, Copenhaver Eric, Zuchero J Bradley, Müller Holger, Cui Bianxiao

机构信息

Department of Chemistry, Stanford University, Stanford, CA 94305.

Department of Neurosurgery, Stanford University, Stanford, CA 94305.

出版信息

Proc Natl Acad Sci U S A. 2020 Jul 21;117(29):17260-17268. doi: 10.1073/pnas.2002352117. Epub 2020 Jul 6.

Abstract

Understanding how a network of interconnected neurons receives, stores, and processes information in the human brain is one of the outstanding scientific challenges of our time. The ability to reliably detect neuroelectric activities is essential to addressing this challenge. Optical recording using voltage-sensitive fluorescent probes has provided unprecedented flexibility for choosing regions of interest in recording neuronal activities. However, when recording at a high frame rate such as 500 to 1,000 Hz, fluorescence-based voltage sensors often suffer from photobleaching and phototoxicity, which limit the recording duration. Here, we report an approach called electrochromic optical recording (ECORE) that achieves label-free optical recording of spontaneous neuroelectrical activities. ECORE utilizes the electrochromism of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) thin films, whose optical absorption can be modulated by an applied voltage. Being based on optical reflection instead of fluorescence, ECORE offers the flexibility of an optical probe without suffering from photobleaching or phototoxicity. Using ECORE, we optically recorded spontaneous action potentials in cardiomyocytes, cultured hippocampal and dorsal root ganglion neurons, and brain slices. With minimal perturbation to cells, ECORE allows long-term optical recording over multiple days.

摘要

理解相互连接的神经元网络如何在人类大脑中接收、存储和处理信息是我们这个时代最突出的科学挑战之一。可靠检测神经电活动的能力对于应对这一挑战至关重要。使用电压敏感荧光探针的光学记录为选择记录神经元活动的感兴趣区域提供了前所未有的灵活性。然而,当以500至1000赫兹等高帧率进行记录时,基于荧光的电压传感器经常会受到光漂白和光毒性的影响,这限制了记录持续时间。在此,我们报告一种称为电致变色光学记录(ECORE)的方法,该方法可实现对自发神经电活动的无标记光学记录。ECORE利用聚(3,4-乙撑二氧噻吩)聚苯乙烯磺酸盐(PEDOT:PSS)薄膜的电致变色特性,其光吸收可通过施加电压进行调制。基于光反射而非荧光,ECORE提供了光学探针的灵活性,而不会受到光漂白或光毒性的影响。使用ECORE,我们对心肌细胞、培养的海马体和背根神经节神经元以及脑片的自发动作电位进行了光学记录。在对细胞干扰最小的情况下,ECORE允许进行长达数天的长期光学记录。

相似文献

1
Label-free optical detection of bioelectric potentials using electrochromic thin films.使用电致变色薄膜对生物电势进行无标记光学检测。
Proc Natl Acad Sci U S A. 2020 Jul 21;117(29):17260-17268. doi: 10.1073/pnas.2002352117. Epub 2020 Jul 6.
2
3
Optical Electrophysiology: Toward the Goal of Label-Free Voltage Imaging.光学电生理学:迈向无标记电压成像的目标。
J Am Chem Soc. 2021 Jul 21;143(28):10482-10499. doi: 10.1021/jacs.1c02960. Epub 2021 Jun 30.

引用本文的文献

1
Trionic All-optical Biological Voltage Sensing via Quantum Statistics.通过量子统计实现的全光学生物电压传感
Nat Photonics. 2025 May;19(5):540-548. doi: 10.1038/s41566-025-01637-w. Epub 2025 Mar 3.
3
Innovating beyond electrophysiology through multimodal neural interfaces.通过多模态神经接口超越电生理学进行创新。
Nat Rev Electr Eng. 2025 Jan;2(1):42-57. doi: 10.1038/s44287-024-00121-x. Epub 2024 Dec 16.
9

本文引用的文献

4
Full-field interferometric imaging of propagating action potentials.传播动作电位的全场干涉成像。
Light Sci Appl. 2018 Dec 12;7:107. doi: 10.1038/s41377-018-0107-9. eCollection 2018.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验