Suppr超能文献

三种机器学习技术与传统技术对脓毒症诱导的凝血病进展预测的比较分析

Comparative Analysis of Three Machine-Learning Techniques and Conventional Techniques for Predicting Sepsis-Induced Coagulopathy Progression.

作者信息

Hasegawa Daisuke, Yamakawa Kazuma, Nishida Kazuki, Okada Naoki, Murao Shuhei, Nishida Osamu

机构信息

Department of Anesthesiology and Critical Care Medicine, Fujita Health University School of Medicine, 1-98, Dengakugakubo, kutsukakecho, Toyoake, Aichi 470-1192, Japan.

Department of Emergency Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan.

出版信息

J Clin Med. 2020 Jul 4;9(7):2113. doi: 10.3390/jcm9072113.

Abstract

Sepsis-induced coagulopathy has poor prognosis; however, there is no established tool for predicting it. We aimed to create predictive models for coagulopathy progression using machine-learning techniques to evaluate predictive accuracies of machine-learning and conventional techniques. A post-hoc subgroup analysis was conducted based on the Japan Septic Disseminated Intravascular Coagulation retrospective study. We used the International Society on Thrombosis and Haemostasis disseminated intravascular coagulation (DIC) score to calculate the ΔDIC score as ((DIC score on Day 3) - (DIC score on Day 1)). The primary outcome was to determine whether the predictive accuracy of ΔDIC was more than 0. The secondary outcome was the actual predictive accuracy of ΔDIC (predicted ΔDIC-real ΔDIC). We used the machine-learning methods, such as random forests (RF), support vector machines (SVM), and neural networks (NN); their predictive accuracies were compared with those of conventional methods. In total, 1017 patients were included. Regarding DIC progression, predictive accuracy of the multiple linear regression, RF, SVM, and NN models was 63.7%, 67.0%, 64.4%, and 59.8%, respectively. The difference between predicted ΔDIC and real ΔDIC was 2.05, 1.54, 2.24, and 1.77 for the multiple linear regression, RF, SVM, and NN models, respectively. RF had the highest predictive accuracy.

摘要

脓毒症诱导的凝血病预后较差;然而,目前尚无用于预测它的既定工具。我们旨在使用机器学习技术创建凝血病进展的预测模型,以评估机器学习技术和传统技术的预测准确性。基于日本脓毒症弥散性血管内凝血回顾性研究进行了事后亚组分析。我们使用国际血栓与止血学会的弥散性血管内凝血(DIC)评分来计算ΔDIC评分,即(第3天的DIC评分 - 第1天的DIC评分)。主要结果是确定ΔDIC的预测准确性是否大于0。次要结果是ΔDIC的实际预测准确性(预测的ΔDIC - 实际的ΔDIC)。我们使用了随机森林(RF)、支持向量机(SVM)和神经网络(NN)等机器学习方法;并将它们的预测准确性与传统方法的进行比较。总共纳入了1017例患者。关于DIC进展,多元线性回归、RF、SVM和NN模型的预测准确性分别为63.7%、67.0%、64.4%和

59.8%。多元线性回归、RF、SVM和NN模型预测的ΔDIC与实际的ΔDIC之间的差异分别为2.05、1.54、2.24和1.77。RF具有最高的预测准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae50/7408668/919477e94e14/jcm-09-02113-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验