Suppr超能文献

基于基因组规模代谢模型驱动设计的M1cam限定培养基

Genome-Scale Metabolic Model Driven Design of a Defined Medium for M1cam.

作者信息

Tejera Noemi, Crossman Lisa, Pearson Bruce, Stoakes Emily, Nasher Fauzy, Djeghout Bilal, Poolman Mark, Wain John, Singh Dipali

机构信息

Microbes in Food Chain, Quadram Institute Biosciences, Norwich Research Park, Norwich, United Kingdom.

SequenceAnalysis.co.uk, NRP Innovation Centre, Norwich, United Kingdom.

出版信息

Front Microbiol. 2020 Jun 19;11:1072. doi: 10.3389/fmicb.2020.01072. eCollection 2020.

Abstract

, the most frequent cause of food-borne bacterial gastroenteritis, is a fastidious organism when grown in the laboratory. Oxygen is required for growth, despite the presence of the metabolic mechanism for anaerobic respiration. Amino acid auxotrophies are variably reported and energy metabolism can occur through several electron donor/acceptor combinations. Overall, the picture is one of a flexible, but vulnerable metabolism. To understand metabolism, we have constructed a fully curated, metabolic model for the reference organism M1 (our variant is M1cam) and validated it through laboratory experiments. Our results show that M1cam is auxotrophic for methionine, niacinamide, and pantothenate. There are complete biosynthesis pathways for all amino acids except methionine and it can produce energy, but not biomass, in the absence of oxygen. M1cam will grow in DMEM/F-12 defined media but not in the previously published specific defined media tested. Using the model, we identified potential auxotrophies and substrates that may improve growth. With this information, we designed simple defined media containing inorganic salts, the auxotrophic substrates, L-methionine, niacinamide, and pantothenate, pyruvate and additional amino acids L-cysteine, L-serine, and L-glutamine for growth enhancement. Our defined media supports a 1.75-fold higher growth rate than Brucella broth after 48 h at 37°C and sustains the growth of other strains. This media can be used to design reproducible assays that can help in better understanding the adaptation, stress resistance, and the virulence mechanisms of this pathogen. We have shown that with a well-curated metabolic model it is possible to design a media to grow this fastidious organism. This has implications for the investigation of new species defined through metagenomics, such as .

摘要

作为食源性细菌性肠胃炎最常见的病因,在实验室培养时是一种苛求菌。尽管存在无氧呼吸的代谢机制,但生长仍需要氧气。氨基酸营养缺陷型的报道各不相同,能量代谢可通过几种电子供体/受体组合发生。总体而言,其代谢情况是灵活但脆弱的。为了解其代谢,我们为参考菌株M1(我们的变体是M1cam)构建了一个经过全面整理的代谢模型,并通过实验室实验对其进行了验证。我们的结果表明,M1cam对蛋氨酸、烟酰胺和泛酸盐存在营养缺陷。除蛋氨酸外,所有氨基酸都有完整的生物合成途径,并且在无氧条件下它可以产生能量,但不能产生生物量。M1cam能在DMEM/F - 12限定培养基中生长,但不能在之前测试过的特定限定培养基中生长。利用该模型,我们确定了可能改善生长的潜在营养缺陷型和底物。有了这些信息,我们设计了简单的限定培养基,其中含有无机盐、营养缺陷型底物、L - 蛋氨酸、烟酰胺和泛酸盐、丙酮酸以及额外的氨基酸L - 半胱氨酸、L - 丝氨酸和L - 谷氨酰胺以促进生长。我们的限定培养基在37°C培养48小时后,支持的生长速率比布鲁氏菌肉汤高1.75倍,并能维持其他菌株的生长。这种培养基可用于设计可重复的试验,有助于更好地理解这种病原体的适应性、抗逆性和毒力机制。我们已经表明,通过精心整理的代谢模型,有可能设计出一种培养基来培养这种苛求菌。这对通过宏基因组学定义的新物种的研究具有启示意义,例如。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验