Joshi Jaydeep, Zhou Tong, Krylyuk Sergiy, Davydov Albert V, Žutić Igor, Vora Patrick M
Department of Physics and Astronomy, George Mason University, Fairfax, Virginia 22030, United States.
Quantum Science and Engineering Center, George Mason University, Fairfax, Virginia 22030, United States.
ACS Nano. 2020 Jul 28;14(7):8528-8538. doi: 10.1021/acsnano.0c02803. Epub 2020 Jul 13.
Neutral and charged excitons (trions) in atomically thin materials offer important capabilities for photonics, from ultrafast photodetectors to highly efficient light-emitting diodes and lasers. Recent studies of van der Waals (vdW) heterostructures comprised of dissimilar monolayer materials have uncovered a wealth of optical phenomena that are predominantly governed by interlayer interactions. Here, we examine the optical properties in NbSe-MoSe vdW heterostructures, which provide an important model system to study metal-semiconductor interfaces, a common element in optoelectronics. Through low-temperature photoluminescence (PL) microscopy, we discover a sharp emission feature, L1, that is localized at the NbSe-capped regions of MoSe. L1 is observed at energies below the commonly studied MoSe excitons and trions and exhibits temperature- and power-dependent PL consistent with exciton localization in a confining potential. This PL feature is robust, observed in a variety of samples fabricated with different stacking geometries and cleaning procedures. Using first-principles calculations, we reveal that the confinement potential required for exciton localization naturally arises from the in-plane band bending due to the changes in the electron affinity between pristine MoSe and NbSe-MoSe heterostructure. We discuss the implications of our studies for atomically thin optoelectronics devices with atomically sharp interfaces and tunable electronic structures.
原子级薄材料中的中性和带电激子(三重态激子)为光子学提供了重要功能,从超快光电探测器到高效发光二极管和激光器。最近对由不同单层材料组成的范德华(vdW)异质结构的研究发现了大量主要由层间相互作用主导的光学现象。在这里,我们研究了NbSe-MoSe vdW异质结构的光学性质,它为研究金属-半导体界面提供了一个重要的模型系统,这是光电子学中的一个常见元素。通过低温光致发光(PL)显微镜,我们发现了一个尖锐的发射特征L1,它位于MoSe的NbSe覆盖区域。L1在低于通常研究的MoSe激子和三重态激子的能量处被观察到,并且表现出与激子在限制势中的局域化一致的温度和功率依赖的PL。这种PL特征很稳健,在使用不同堆叠几何结构和清洁程序制造的各种样品中都能观察到。使用第一性原理计算,我们揭示了激子局域化所需的限制势自然地源于由于原始MoSe和NbSe-MoSe异质结构之间电子亲和力的变化而导致的面内能带弯曲。我们讨论了我们的研究对具有原子级尖锐界面和可调电子结构的原子级薄光电器件的意义。