Suppr超能文献

基于蛋白质组学的机器学习方法可作为传统生物标志物的替代品,用于慢性肾脏病的鉴别诊断。

Proteomics-Based Machine Learning Approach as an Alternative to Conventional Biomarkers for Differential Diagnosis of Chronic Kidney Diseases.

机构信息

Laboratory for Biomolecular and Medical Technologies, Krasnoyarsk State Medical University Named after Prof. V.F. Voyno-Yasenetsky, 660022 Krasnoyarsk, Russia.

Laboratory for Digital Controlled Drugs and Theranostics, Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Science", 660036 Krasnoyarsk, Russia.

出版信息

Int J Mol Sci. 2020 Jul 7;21(13):4802. doi: 10.3390/ijms21134802.

Abstract

Diabetic nephropathy, hypertension, and glomerulonephritis are the most common causes of chronic kidney diseases (CKD). Since CKD of various origins may not become apparent until kidney function is significantly impaired, a differential diagnosis and an appropriate treatment are needed at the very early stages. Conventional biomarkers may not have sufficient separation capabilities, while a full-proteomic approach may be used for these purposes. In the current study, several machine learning algorithms were examined for the differential diagnosis of CKD of three origins. The tested dataset was based on whole proteomic data obtained after the mass spectrometric analysis of plasma and urine samples of 34 CKD patients and the use of label-free quantification approach. The k-nearest-neighbors algorithm showed the possibility of separation of a healthy group from renal patients in general by proteomics data of plasma with high confidence (97.8%). This algorithm has also be proven to be the best of the three tested for distinguishing the groups of patients with diabetic nephropathy and glomerulonephritis according to proteomics data of plasma (96.3% of correct decisions). The group of hypertensive nephropathy could not be reliably separated according to plasma data, whereas analysis of entire proteomics data of urine did not allow differentiating the three diseases. Nevertheless, the group of hypertensive nephropathy was reliably separated from all other renal patients using the k-nearest-neighbors classifier "one against all" with 100% of accuracy by urine proteome data. The tested algorithms show good abilities to differentiate the various groups across proteomic data sets, which may help to avoid invasive intervention for the verification of the glomerulonephritis subtypes, as well as to differentiate hypertensive and diabetic nephropathy in the early stages based not on individual biomarkers, but on the whole proteomic composition of urine and blood.

摘要

糖尿病肾病、高血压和肾小球肾炎是慢性肾脏病(CKD)最常见的病因。由于各种病因的 CKD 可能直到肾功能明显受损才会显现出来,因此需要在早期进行鉴别诊断和适当的治疗。传统的生物标志物可能没有足够的分离能力,而全蛋白质组学方法可能适用于这些目的。在本研究中,研究人员检查了几种机器学习算法用于鉴别三种病因的 CKD。所测试的数据集基于对 34 名 CKD 患者的血浆和尿液样本进行质谱分析后获得的全蛋白质组数据,并使用无标记定量方法。k-最近邻算法显示,通过血浆蛋白质组学数据,可以高置信度(97.8%)将健康组与一般肾脏患者区分开来。该算法还被证明是三种测试算法中用于根据血浆蛋白质组学数据区分糖尿病肾病和肾小球肾炎患者组的最佳算法(96.3%的正确决策)。根据血浆数据,高血压肾病组无法可靠分离,而尿液的整个蛋白质组学数据分析也无法区分这三种疾病。然而,使用 k-最近邻分类器“一对多”,可以根据尿液蛋白质组数据将高血压肾病组与所有其他肾脏患者可靠地区分开来,准确率为 100%。测试的算法在区分蛋白质组学数据集的各个组方面表现出良好的能力,这可能有助于避免对肾小球肾炎亚型进行有创干预,并且可以根据尿液和血液的整体蛋白质组组成,而不是基于单个生物标志物,在早期区分高血压和糖尿病肾病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e2f/7369970/54e7a983ad98/ijms-21-04802-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验