Department of Cell and Developmental Biology, Zoological Institute, University of Kiel, D-24118 Kiel, Germany;
Department of Biochemistry and Biophysics, National Infrastructure of Sweden, Science for Life Laboratory, Stockholm University, 17121 Solna, Sweden.
Proc Natl Acad Sci U S A. 2020 Jul 28;117(30):17854-17863. doi: 10.1073/pnas.1920469117. Epub 2020 Jul 9.
Pacemaker neurons exert control over neuronal circuit function by their intrinsic ability to generate rhythmic bursts of action potential. Recent work has identified rhythmic gut contractions in human, mice, and hydra to be dependent on both neurons and the resident microbiota. However, little is known about the evolutionary origin of these neurons and their interaction with microbes. In this study, we identified and functionally characterized prototypical ANO/SCN/TRPM ion channel-expressing pacemaker cells in the basal metazoan by using a combination of single-cell transcriptomics, immunochemistry, and functional experiments. Unexpectedly, these prototypical pacemaker neurons express a rich set of immune-related genes mediating their interaction with the microbial environment. Furthermore, functional experiments gave a strong support to a model of the evolutionary emergence of pacemaker cells as neurons using components of innate immunity to interact with the microbial environment and ion channels to generate rhythmic contractions.
起搏神经元通过其内在产生动作电位节律爆发的能力来控制神经元回路功能。最近的研究表明,人类、小鼠和水螅的节律性肠道收缩既依赖于神经元,也依赖于常驻微生物群。然而,人们对这些神经元的进化起源及其与微生物的相互作用知之甚少。在这项研究中,我们通过单细胞转录组学、免疫化学和功能实验的组合,在基础后生动物中鉴定和功能表征了典型的ANO/SCN/TRPM 离子通道表达起搏细胞。出乎意料的是,这些典型的起搏神经元表达了一整套与微生物环境相互作用的免疫相关基因。此外,功能实验有力地支持了这样一种模型,即利用先天免疫的组成部分与微生物环境相互作用并通过离子通道产生节律性收缩,作为进化出现的起搏细胞的神经元。