Bazrafshan Alisina, Meyer Travis A, Su Hanquan, Brockman Joshua M, Blanchard Aaron T, Piranej Selma, Duan Yuxin, Ke Yonggang, Salaita Khalid
Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA, 30322, USA.
Wallace H. Coulter Department of Biomedical Engineering, Georgia, Institute of Technology and Emory University, Atlanta, GA, 30322, USA.
Angew Chem Int Ed Engl. 2020 Jun 8;59(24):9514-9521. doi: 10.1002/anie.201916281. Epub 2020 Apr 1.
Inspired by biological motor proteins, that efficiently convert chemical fuel to unidirectional motion, there has been considerable interest in developing synthetic analogues. Among the synthetic motors created thus far, DNA motors that undertake discrete steps on RNA tracks have shown the greatest promise. Nonetheless, DNA nanomotors lack intrinsic directionality, are low speed and take a limited number of steps prior to stalling or dissociation. Herein, we report the first example of a highly tunable DNA origami motor that moves linearly over micron distances at an average speed of 40 nm/min. Importantly, nanomotors move unidirectionally without intervention through an external force field or a patterned track. Because DNA origami enables precise testing of nanoscale structure-function relationships, we were able to experimentally study the role of motor shape, chassis flexibility, leg distribution, and total number of legs in tuning performance. An anisotropic rigid chassis coupled with a high density of legs maximizes nanomotor speed and endurance.
受能高效地将化学燃料转化为单向运动的生物运动蛋白启发,人们对开发合成类似物产生了浓厚兴趣。在迄今为止制造的合成马达中,能在RNA轨道上进行离散步移的DNA马达展现出了最大的潜力。尽管如此,DNA纳米马达缺乏内在方向性,速度较低,且在停滞或解离前只能进行有限数量的步移。在此,我们报道了首个高度可调谐的DNA折纸马达实例,它能以40 nm/分钟的平均速度在微米距离上线性移动。重要的是,纳米马达无需外力场或图案化轨道的干预就能单向移动。由于DNA折纸能够精确测试纳米级结构 - 功能关系,我们得以通过实验研究马达形状、底盘柔韧性、腿部分布以及腿部总数在调节性能方面的作用。一个各向异性的刚性底盘与高密度的腿部相结合,可使纳米马达的速度和耐力最大化。