Suppr超能文献

范德华半导体光栅中的混合激子-表面等离激元极化激元

Hybrid exciton-plasmon-polaritons in van der Waals semiconductor gratings.

作者信息

Zhang Huiqin, Abhiraman Bhaskar, Zhang Qing, Miao Jinshui, Jo Kiyoung, Roccasecca Stefano, Knight Mark W, Davoyan Artur R, Jariwala Deep

机构信息

Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.

Department of Physics, University of Pennsylvania, Philadelphia, PA, 19104, USA.

出版信息

Nat Commun. 2020 Jul 15;11(1):3552. doi: 10.1038/s41467-020-17313-2.

Abstract

Van der Waals materials and heterostructures that manifest strongly bound exciton states at room temperature also exhibit emergent physical phenomena and are of great promise for optoelectronic applications. Here, we demonstrate that nanostructured, multilayer transition metal dichalcogenides (TMDCs) by themselves provide an ideal platform for excitation and control of excitonic modes, paving the way to exciton-photonics. Hence, we show that by patterning the TMDCs into nanoresonators, strong dispersion and avoided crossing of exciton, cavity photons and plasmon polaritons with effective separation energy exceeding 410 meV can be controlled with great precision. We further observe that inherently strong TMDC exciton absorption resonances may be completely suppressed due to excitation of hybrid light-matter states and their interference. Our work paves the way to the next generation of integrated exciton optoelectronic nano-devices and applications in light generation, computing, and sensing.

摘要

在室温下表现出强束缚激子态的范德华材料和异质结构也展现出新兴的物理现象,并且在光电子应用方面具有巨大潜力。在此,我们证明,纳米结构的多层过渡金属二硫属化物(TMDC)本身为激子模式的激发和控制提供了一个理想平台,为激子光子学铺平了道路。因此,我们表明,通过将TMDC图案化为纳米谐振器,可以精确控制激子、腔光子和表面等离激元极化激元的强色散和避免交叉,有效分离能量超过410 meV。我们进一步观察到,由于混合光物质态的激发及其干涉,TMDC固有的强激子吸收共振可能会被完全抑制。我们的工作为下一代集成激子光电子纳米器件以及在光产生、计算和传感方面的应用铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e463/7363824/88fe82187fad/41467_2020_17313_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验