Kim Hee, Ganslandt Thomas, Miethke Thomas, Neumaier Michael, Kittel Maximilian
Heinrich-Lanz-Center for Digital Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
Institute of Medical Microbiology and Hygiene, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
JMIR Res Protoc. 2020 Jul 13;9(7):e16843. doi: 10.2196/16843.
In recent years, remarkable progress has been made in deep learning technology and successful use cases have been introduced in the medical domain. However, not many studies have considered high-performance computing to fully appreciate the capability of deep learning technology.
This paper aims to design a solution to accelerate an automated Gram stain image interpretation by means of a deep learning framework without additional hardware resources.
We will apply and evaluate 3 methodologies, namely fine-tuning, an integer arithmetic-only framework, and hyperparameter tuning.
The choice of pretrained models and the ideal setting for layer tuning and hyperparameter tuning will be determined. These results will provide an empirical yet reproducible guideline for those who consider a rapid deep learning solution for Gram stain image interpretation. The results are planned to be announced in the first quarter of 2021.
Making a balanced decision between modeling performance and computational performance is the key for a successful deep learning solution. Otherwise, highly accurate but slow deep learning solutions can add value to routine care.
INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/16843.
近年来,深度学习技术取得了显著进展,并且在医学领域也出现了成功的应用案例。然而,没有多少研究考虑过利用高性能计算来充分发挥深度学习技术的能力。
本文旨在设计一种解决方案,通过深度学习框架在不增加硬件资源的情况下加速革兰氏染色图像的自动解读。
我们将应用并评估3种方法,即微调、仅使用整数运算的框架和超参数调整。
将确定预训练模型的选择以及层调整和超参数调整的理想设置。这些结果将为那些考虑采用快速深度学习解决方案进行革兰氏染色图像解读的人提供一个经验性且可重复的指导方针。计划于2021年第一季度公布结果。
在建模性能和计算性能之间做出平衡决策是成功的深度学习解决方案的关键。否则,高精度但速度慢的深度学习解决方案也可为常规护理增添价值。
国际注册报告识别号(IRRID):DERR1-10.2196/16843