Suppr超能文献

实施一个用于对考虑进入重症监护病房的患者进行实时风险评估的系统。

Implementing a system for the real-time risk assessment of patients considered for intensive care.

机构信息

Centre for Healthcare Modelling and Informatics, University of Portsmouth, Buckingham Building, Lion Terrace, Portsmouth, PO1 3HE, UK.

IM&T, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK.

出版信息

BMC Med Inform Decis Mak. 2020 Jul 16;20(1):161. doi: 10.1186/s12911-020-01176-0.

Abstract

BACKGROUND

Delay in identifying deterioration in hospitalised patients is associated with delayed admission to an intensive care unit (ICU) and poor outcomes. For the HAVEN project (HICF ref.: HICF-R9-524), we have developed a mathematical model that identifies deterioration in hospitalised patients in real time and facilitates the intervention of an ICU outreach team. This paper describes the system that has been designed to implement the model. We have used innovative technologies such as Portable Format for Analytics (PFA) and Open Services Gateway initiative (OSGi) to define the predictive statistical model and implement the system respectively for greater configurability, reliability, and availability.

RESULTS

The HAVEN system has been deployed as part of a research project in the Oxford University Hospitals NHS Foundation Trust. The system has so far processed > 164,000 vital signs observations and > 68,000 laboratory results for > 12,500 patients and the algorithm generated score is being evaluated to review patients who are under consideration for transfer to ICU. No clinical decisions are being made based on output from the system. The HAVEN score has been computed using a PFA model for all these patients. The intent is that this score will be displayed on a graphical user interface for clinician review and response.

CONCLUSIONS

The system uses a configurable PFA model to compute the HAVEN score which makes the system easily upgradable in terms of enhancing systems' predictive capability. Further system enhancements are planned to handle new data sources and additional management screens.

摘要

背景

在医院住院的患者病情恶化的识别延迟与 ICU 入住延迟和不良预后有关。在 HAVEN 项目(HICF 参考:HICF-R9-524)中,我们开发了一种数学模型,可以实时识别住院患者的病情恶化,并促进 ICU 外展团队的干预。本文介绍了为实施该模型而设计的系统。我们使用了创新技术,如可分析便携式格式(PFA)和开放服务网关倡议(OSGi),分别定义预测统计模型和实施系统,以提高可配置性、可靠性和可用性。

结果

HAVEN 系统已作为牛津大学医院 NHS 基金会信托的研究项目的一部分部署。该系统迄今为止已处理了 >164000 个生命体征观察值和 >68000 个实验室结果,涉及 >12500 名患者,正在评估算法生成的分数,以审查正在考虑转入 ICU 的患者。目前没有根据系统输出做出任何临床决策。使用 PFA 模型为所有这些患者计算了 HAVEN 评分。目的是将该分数显示在图形用户界面上,供临床医生查看和响应。

结论

该系统使用可配置的 PFA 模型来计算 HAVEN 评分,从而使系统在增强系统的预测能力方面具有较高的可升级性。计划进一步系统增强,以处理新数据源和其他管理屏幕。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7582/7366315/7a9e41204877/12911_2020_1176_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验