Suppr超能文献

基于血栓的影像组学预测急性缺血性脑卒中机械取栓策略的再通成功。

Clot-Based Radiomics Predict a Mechanical Thrombectomy Strategy for Successful Recanalization in Acute Ischemic Stroke.

机构信息

Radiology Unit, Department of Diagnostic (J.H., X.M., S.B., P.-A.P., A.P.), Geneva University Hospitals, Switzerland.

Department of Radiology and Medical Informatics, University of Geneva, Switzerland (J.H., M.I.V., X.M., P.-A.P., A.P., K.-O.L., P.M.).

出版信息

Stroke. 2020 Aug;51(8):2488-2494. doi: 10.1161/STROKEAHA.120.030334. Epub 2020 Jul 20.

Abstract

BACKGROUND AND PURPOSE

Mechanical thrombectomy (MTB) is a reference treatment for acute ischemic stroke, with several endovascular strategies currently available. However, no quantitative methods are available for the selection of the best endovascular strategy or to predict the difficulty of clot removal. We aimed to investigate the predictive value of an endovascular strategy based on radiomic features extracted from the clot on preinterventional, noncontrast computed tomography to identify patients with first-attempt recanalization with thromboaspiration and to predict the overall number of passages needed with an MTB device for successful recanalization.

METHODS

We performed a study including 2 cohorts of patients admitted to our hospital: a retrospective training cohort (n=109) and a prospective validation cohort (n=47). Thrombi were segmented on noncontrast computed tomography, followed by the automatic computation of 1485 thrombus-related radiomic features. After selection of the relevant features, 2 machine learning models were developed on the training cohort to predict (1) first-attempt recanalization with thromboaspiration and (2) the overall number of passages with MTB devices for successful recanalization. The performance of the models was evaluated on the prospective validation cohort.

RESULTS

A small subset of radiomic features (n=9) was predictive of first-attempt recanalization with thromboaspiration (receiver operating characteristic curve-area under the curve, 0.88). The same subset also predicted the overall number of passages required for successful recanalization (explained variance, 0.70; mean squared error, 0.76; Pearson correlation coefficient, 0.73; <0.05).

CONCLUSIONS

Clot-based radiomics have the ability to predict an MTB strategy for successful recanalization in acute ischemic stroke, thus allowing a potentially better selection of the MTB strategy, as well as patients who are most likely to benefit from the intervention.

摘要

背景与目的

机械血栓切除术(MTB)是急性缺血性脑卒中的一种参考治疗方法,目前有几种血管内策略可供选择。然而,目前还没有定量方法来选择最佳的血管内策略,也无法预测血栓清除的难度。我们旨在研究一种基于血管内策略的预测价值,该策略基于介入前非对比 CT 上提取的血栓的放射组学特征,以识别使用血栓抽吸进行首次尝试再通的患者,并预测使用 MTB 设备成功再通所需的总通过次数。

方法

我们进行了一项包括 2 组在我院住院的患者的研究:回顾性训练队列(n=109)和前瞻性验证队列(n=47)。对非对比 CT 进行血栓分割,然后自动计算 1485 个与血栓相关的放射组学特征。在选择相关特征后,我们在训练队列上开发了 2 个机器学习模型,以预测(1)使用血栓抽吸进行首次尝试再通,(2)使用 MTB 设备成功再通所需的总通过次数。模型在前瞻性验证队列上进行了评估。

结果

一小部分放射组学特征(n=9)可预测使用血栓抽吸进行首次尝试再通(受试者工作特征曲线下面积,0.88)。同一组特征也预测了成功再通所需的总通过次数(解释方差,0.70;均方误差,0.76;皮尔逊相关系数,0.73;<0.05)。

结论

基于血栓的放射组学具有预测急性缺血性脑卒中 MTB 策略成功再通的能力,从而可以更好地选择 MTB 策略,以及最有可能从干预中受益的患者。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验