The Lambda Academy of Science, Success, Western Australia, Australia.
Rev Med Virol. 2020 Sep;30(5):e2140. doi: 10.1002/rmv.2140. Epub 2020 Jul 19.
A knowledge-based cybernetic framework model representing the dynamics of SARS-CoV-2 inside the human body has been studied analytically and in silico to explore the pathophysiologic regulations. The following modeling methodology was developed as a platform to introduce a predictive tool supporting a therapeutic approach to Covid-19 disease. A time-dependent nonlinear system of ordinary differential equations model was constructed involving type-I cells, type-II cells, SARS-CoV-2 virus, inflammatory mediators, interleukins along with host pulmonary gas exchange rate, thermostat control, and mean pressure difference. This formalism introduced about 17 unknown parameters. Estimating these unknown parameters requires a mathematical association with the in vivo sparse data and the dynamic sensitivities of the model. The cybernetic model can simulate a dynamic response to the reduced pulmonary alveolar gas exchange rate, thermostat control, and mean pressure difference under a very critical condition based on equilibrium (steady state) values of the inflammatory mediators and system parameters. In silico analysis of the current cybernetical approach with system dynamical modeling can provide an intellectual framework to help experimentalists identify more active therapeutic approaches.
已经对一种基于知识的控制论框架模型进行了分析和计算机模拟研究,以探索 SARS-CoV-2 在人体内的动态变化。该模型开发了一种方法学平台,以引入一种预测工具,为治疗 COVID-19 疾病提供支持。该模型构建了一个时变非线性常微分方程组系统,其中包括 I 型细胞、II 型细胞、SARS-CoV-2 病毒、炎症介质、白细胞介素以及宿主肺部气体交换率、体温控制和平均压差。该形式引入了大约 17 个未知参数。估计这些未知参数需要将数学模型与体内稀疏数据以及模型的动态灵敏度联系起来。该控制论模型可以根据炎症介质和系统参数的平衡(稳态)值,模拟在非常危急的情况下,肺部肺泡气体交换率、体温控制和平均压差降低的动态响应。基于系统动力学建模的当前控制论方法的计算机模拟分析可以为实验人员提供一个智能框架,以帮助他们确定更有效的治疗方法。