Aslan Muhammet Fatih, Sabanci Kadir
Department of Electrical and Electronics Engineering, Karamanoglu Mehmetbey University, Karaman 70100, Turkey.
Diagnostics (Basel). 2023 Feb 20;13(4):796. doi: 10.3390/diagnostics13040796.
Diabetes, one of the most common diseases worldwide, has become an increasingly global threat to humans in recent years. However, early detection of diabetes greatly inhibits the progression of the disease. This study proposes a new method based on deep learning for the early detection of diabetes. Like many other medical data, the PIMA dataset used in the study contains only numerical values. In this sense, the application of popular convolutional neural network (CNN) models to such data are limited. This study converts numerical data into images based on the feature importance to use the robust representation of CNN models in early diabetes diagnosis. Three different classification strategies are then applied to the resulting diabetes image data. In the first, diabetes images are fed into the ResNet18 and ResNet50 CNN models. In the second, deep features of the ResNet models are fused and classified with support vector machines (SVM). In the last approach, the selected fusion features are classified by SVM. The results demonstrate the robustness of diabetes images in the early diagnosis of diabetes.
糖尿病是全球最常见的疾病之一,近年来已成为对人类日益严重的全球性威胁。然而,糖尿病的早期检测能极大地抑制疾病的进展。本研究提出了一种基于深度学习的糖尿病早期检测新方法。与许多其他医学数据一样,该研究中使用的皮马印第安人糖尿病数据集仅包含数值。从这个意义上说,将流行的卷积神经网络(CNN)模型应用于此类数据是有限的。本研究基于特征重要性将数值数据转换为图像,以便在早期糖尿病诊断中使用CNN模型的强大表示。然后将三种不同的分类策略应用于所得的糖尿病图像数据。第一种方法是将糖尿病图像输入ResNet18和ResNet50 CNN模型。第二种方法是将ResNet模型的深度特征进行融合,并使用支持向量机(SVM)进行分类。在最后一种方法中,通过SVM对选定的融合特征进行分类。结果证明了糖尿病图像在糖尿病早期诊断中的稳健性。