Suppr超能文献

LARa:使用语义属性创建物流中人类活动识别的数据集。

LARa: Creating a Dataset for Human Activity Recognition in Logistics Using Semantic Attributes.

机构信息

Chair of Materials Handling and Warehousing, TU Dortmund University, Joseph-von-Fraunhofer-Str. 2-4, 44227 Dortmund, Germany.

Pattern Recognition in Embedded Systems Groups, TU Dortmund University, Otto-Hahn-Str. 16, 44227 Dortmund, Germany.

出版信息

Sensors (Basel). 2020 Jul 22;20(15):4083. doi: 10.3390/s20154083.

Abstract

Optimizations in logistics require recognition and analysis of human activities. The potential of sensor-based human activity recognition (HAR) in logistics is not yet well explored. Despite a significant increase in HAR datasets in the past twenty years, no available dataset depicts activities in logistics. This contribution presents the first freely accessible logistics-dataset. In the 'Innovationlab Hybrid Services in Logistics' at TU Dortmund University, two picking and one packing scenarios were recreated. Fourteen subjects were recorded individually when performing warehousing activities using Optical marker-based Motion Capture (OMoCap), inertial measurement units (IMUs), and an RGB camera. A total of 758 min of recordings were labeled by 12 annotators in 474 person-h. All the given data have been labeled and categorized into 8 activity classes and 19 binary coarse-semantic descriptions, also called attributes. The dataset is deployed for solving HAR using deep networks.

摘要

物流中的优化需要识别和分析人类活动。基于传感器的人类活动识别 (HAR) 在物流中的潜力尚未得到充分探索。尽管在过去二十年中,HAR 数据集显著增加,但没有可用的数据集描绘物流中的活动。本研究提出了第一个可自由访问的物流数据集。在多特蒙德工业大学的“创新实验室混合物流服务”中,重新创建了两个拣选和一个包装场景。当使用基于光学标记的运动捕捉 (OMoCap)、惯性测量单元 (IMU) 和 RGB 相机的 14 名受试者单独执行仓储活动时,对其进行了记录。总共记录了 758 分钟的录像,由 12 名注释员对 474 个人小时进行了标记。所有给定的数据都经过标记和分类为 8 个活动类别和 19 个二进制粗语义描述,也称为属性。该数据集用于使用深度网络解决 HAR 问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验