Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China.
Nat Commun. 2020 Jul 24;11(1):3708. doi: 10.1038/s41467-020-17530-9.
The Cre-loxP recombination system is a powerful tool for genetic manipulation. However, there are widely recognized limitations with chemically inducible Cre-loxP systems, and the UV and blue-light induced systems have phototoxicity and minimal capacity for deep tissue penetration. Here, we develop a far-red light-induced split Cre-loxP system (FISC system) based on a bacteriophytochrome optogenetic system and split-Cre recombinase, enabling optogenetical regulation of genome engineering in vivo solely by utilizing a far-red light (FRL). The FISC system exhibits low background and no detectable photocytotoxicity, while offering efficient FRL-induced DNA recombination. Our in vivo studies showcase the strong organ-penetration capacity of FISC system, markedly outperforming two blue-light-based Cre systems for recombination induction in the liver. Demonstrating its strong clinical relevance, we successfully deploy a FISC system using adeno-associated virus (AAV) delivery. Thus, the FISC system expands the optogenetic toolbox for DNA recombination to achieve spatiotemporally controlled, non-invasive genome engineering in living systems.
Cre-loxP 重组系统是一种强大的遗传操作工具。然而,化学诱导型 Cre-loxP 系统存在广泛认可的局限性,而 UV 和蓝光诱导系统则具有光毒性和对深层组织穿透能力的限制。在这里,我们基于细菌视紫红质光遗传学系统和分割 Cre 重组酶开发了一种远红光诱导的分割 Cre-loxP 系统(FISC 系统),仅利用远红光(FRL)即可实现体内基因组工程的光遗传学调控。FISC 系统表现出低背景和无明显光细胞毒性,同时提供高效的 FRL 诱导 DNA 重组。我们的体内研究展示了 FISC 系统强大的器官穿透能力,在肝脏中的重组诱导方面明显优于两种基于蓝光的 Cre 系统。证明了其强烈的临床相关性,我们成功地使用腺相关病毒(AAV)传递来部署 FISC 系统。因此,FISC 系统扩展了光遗传学工具包,用于实现活系统中时空可控的、非侵入性的基因组工程。