Department of Mechanical, Robotics and Energy Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Jung-gu, Seoul, 100-715, Republic of Korea.
Department of Mechanical, Robotics and Energy Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Jung-gu, Seoul, 100-715, Republic of Korea.
J Therm Biol. 2020 Jul;91:102644. doi: 10.1016/j.jtherbio.2020.102644. Epub 2020 Jun 17.
Recent progress in nanotechnology has advanced the development of magnetic nanoparticle (MNP) hyperthermia as a potential therapeutic platform for treating diseases. Due to the challenges in reliably predicting the spatiotemporal distribution of temperature in the living tissue during the therapy of MNP hyperthermia, critical for ensuring the safety as well as efficacy of the therapy, the development of effective and reliable numerical models is warranted. This article provides a comprehensive review on the various mathematical methods for determining specific loss power (SLP), a parameter used to quantify the heat generation capability of MNPs, as well as bio-heat models for predicting heat transfer phenomena and temperature distribution in living tissue upon the application of MNP hyperthermia. This article also discusses potential applications of the bio-heat models of MNP hyperthermia for therapeutic purposes, particularly for cancer treatment, along with their limitations that could be overcome.
纳米技术的最新进展推动了磁性纳米粒子(MNP)热疗的发展,使其成为治疗疾病的潜在治疗平台。由于在 MNP 热疗治疗过程中可靠地预测活组织中温度的时空分布存在挑战,这对于确保治疗的安全性和疗效至关重要,因此需要开发有效的、可靠的数值模型。本文全面回顾了用于确定比吸收率(SLP)的各种数学方法,该参数用于量化 MNP 的发热能力,以及生物传热模型,用于预测在应用 MNP 热疗时活组织中的传热现象和温度分布。本文还讨论了 MNP 热疗的生物传热模型在治疗方面的潜在应用,特别是在癌症治疗方面,以及它们可能克服的局限性。
Int J Nanomedicine. 2017-8-28
Bull Cancer. 2017-5
Biomed Tech (Berl). 2015-10
Biomed Tech (Berl). 2015-10
Biotechnol J. 2011-8-26
Nanotechnology. 2014-11-14
Nanoscale Horiz. 2024-2-26
Nanomaterials (Basel). 2021-12-15
Adv Sci (Weinh). 2021-6
Int J Hyperthermia. 2020
Int J Hyperthermia. 2019
Materials (Basel). 2019-2-16
AJNR Am J Neuroradiol. 2019-1-17
Front Pharmacol. 2018-8-2