Suppr超能文献

用于稳定酵母中长期合成代谢产物形成的调控控制回路。

Regulatory control circuits for stabilizing long-term anabolic product formation in yeast.

机构信息

Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs, Lyngby, Denmark.

Department of Biotechnology, Delft University of Technology, Delft, the Netherlands.

出版信息

Metab Eng. 2020 Sep;61:369-380. doi: 10.1016/j.ymben.2020.07.006. Epub 2020 Jul 24.

Abstract

Engineering living cells for production of chemicals, enzymes and therapeutics can burden cells due to use of limited native co-factor availability and/or expression burdens, totalling a fitness deficit compared to parental cells encoded through long evolutionary trajectories to maximise fitness. Ultimately, this discrepancy puts a selective pressure against fitness-burdened engineered cells under prolonged bioprocesses, and potentially leads to complete eradication of high-performing engineered cells at the population level. Here we present the mutation landscapes of fitness-burdened yeast cells engineered for vanillin-β-glucoside production. Next, we design synthetic control circuits based on transcriptome analysis and biosensors responsive to vanillin-β-glucoside pathway intermediates in order to stabilize vanillin-β-glucoside production over ~55 generations in sequential passage experiments. Furthermore, using biosensors with two different modes of action we identify control circuits linking vanillin-β-glucoside pathway flux to various essential cellular functions, and demonstrate control circuits robustness and almost 2-fold higher vanillin-β-glucoside production, including 5-fold increase in total vanillin-β-glucoside pathway metabolite accumulation, in a fed-batch fermentation compared to vanillin-β-glucoside producing cells without control circuits.

摘要

工程化的活细胞用于生产化学品、酶和治疗药物时,由于有限的天然辅助因子可用性和/或表达负担的使用,可能会给细胞带来负担,与通过长期进化轨迹编码的亲本细胞相比,会产生适应度缺陷,以最大限度地提高适应度。最终,这种差异会对延长生物过程中适应度负担重的工程细胞施加选择性压力,并可能导致在群体水平上完全消除高性能的工程细胞。在这里,我们展示了用于生产香草基-β-葡萄糖苷的适应度负担重的酵母细胞的突变景观。接下来,我们基于转录组分析和对香草基-β-葡萄糖苷途径中间体有反应的生物传感器来设计合成控制回路,以便在连续传代实验中稳定香草基-β-葡萄糖苷的生产约 55 代。此外,使用具有两种不同作用模式的生物传感器,我们确定了将香草基-β-葡萄糖苷途径通量与各种必需细胞功能联系起来的控制回路,并证明了控制回路的鲁棒性和几乎 2 倍的香草基-β-葡萄糖苷产量增加,包括在分批补料发酵中香草基-β-葡萄糖苷途径代谢物总积累增加 5 倍,而没有控制回路的香草基-β-葡萄糖苷生产细胞则没有。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验