Suppr超能文献

CNNG:一种用于自闭症谱系障碍分类的带有门控循环单元的卷积神经网络。

CNNG: A Convolutional Neural Networks With Gated Recurrent Units for Autism Spectrum Disorder Classification.

作者信息

Jiang Wenjing, Liu Shuaiqi, Zhang Hong, Sun Xiuming, Wang Shui-Hua, Zhao Jie, Yan Jingwen

机构信息

College of Electronic and Information Engineering, Hebei University, Baoding, China.

Machine Vision Technological Innovation Center of Hebei, Baoding, China.

出版信息

Front Aging Neurosci. 2022 Jul 5;14:948704. doi: 10.3389/fnagi.2022.948704. eCollection 2022.

Abstract

As a neurodevelopmental disorder, autism spectrum disorder (ASD) severely affects the living conditions of patients and their families. Early diagnosis of ASD can enable the disease to be effectively intervened in the early stage of development. In this paper, we present an ASD classification network defined as CNNG by combining of convolutional neural network (CNN) and gate recurrent unit (GRU). First, CNNG extracts the 3D spatial features of functional magnetic resonance imaging (fMRI) data by using the convolutional layer of the 3D CNN. Second, CNNG extracts the temporal features by using the GRU and finally classifies them by using the Sigmoid function. The performance of CNNG was validated on the international public data-autism brain imaging data exchange (ABIDE) dataset. According to the experiments, CNNG can be highly effective in extracting the spatio-temporal features of fMRI and achieving a classification accuracy of 72.46%.

摘要

作为一种神经发育障碍,自闭症谱系障碍(ASD)严重影响患者及其家庭的生活状况。ASD的早期诊断能够在疾病发展的早期阶段对其进行有效干预。在本文中,我们提出了一种通过结合卷积神经网络(CNN)和门控循环单元(GRU)定义为CNNG的ASD分类网络。首先,CNNG利用三维CNN的卷积层提取功能磁共振成像(fMRI)数据的三维空间特征。其次,CNNG利用GRU提取时间特征,最后通过Sigmoid函数对其进行分类。CNNG的性能在国际公共数据——自闭症大脑成像数据交换(ABIDE)数据集上得到了验证。根据实验,CNNG在提取fMRI的时空特征以及实现72.46%的分类准确率方面非常有效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed8b/9294312/46238432b1dc/fnagi-14-948704-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验