Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Medicon Village, Lund, Sweden.
Department of Respiratory Medicine and Allergology, Skåne University Hospital, Lund, Sweden.
Int J Cancer. 2021 Jan 1;148(1):238-251. doi: 10.1002/ijc.33242. Epub 2020 Aug 12.
Disease recurrence in surgically treated lung adenocarcinoma (AC) remains high. New approaches for risk stratification beyond tumor stage are needed. Gene expression-based AC subtypes such as the Cancer Genome Atlas Network (TCGA) terminal-respiratory unit (TRU), proximal-inflammatory (PI) and proximal-proliferative (PP) subtypes have been associated with prognosis, but show methodological limitations for robust clinical use. We aimed to derive a platform independent single sample predictor (SSP) for molecular subtype assignment and risk stratification that could function in a clinical setting. Two-class (TRU/nonTRU=SSP2) and three-class (TRU/PP/PI=SSP3) SSPs using the AIMS algorithm were trained in 1655 ACs (n = 9659 genes) from public repositories vs TCGA centroid subtypes. Validation and survival analysis were performed in 977 patients using overall survival (OS) and distant metastasis-free survival (DMFS) as endpoints. In the validation cohort, SSP2 and SSP3 showed accuracies of 0.85 and 0.81, respectively. SSPs captured relevant biology previously associated with the TCGA subtypes and were associated with prognosis. In survival analysis, OS and DMFS for cases discordantly classified between TCGA and SSP2 favored the SSP2 classification. In resected Stage I patients, SSP2 identified TRU-cases with better OS (hazard ratio [HR] = 0.30; 95% confidence interval [CI] = 0.18-0.49) and DMFS (TRU HR = 0.52; 95% CI = 0.33-0.83) independent of age, Stage IA/IB and gender. SSP2 was transformed into a NanoString nCounter assay and tested in 44 Stage I patients using RNA from formalin-fixed tissue, providing prognostic stratification (relapse-free interval, HR = 3.2; 95% CI = 1.2-8.8). In conclusion, gene expression-based SSPs can provide molecular subtype and independent prognostic information in early-stage lung ACs. SSPs may overcome critical limitations in the applicability of gene signatures in lung cancer.
手术治疗的肺腺癌 (AC) 疾病复发率仍然很高。需要寻找新的方法来进行肿瘤分期以外的风险分层。基于基因表达的 AC 亚型,如癌症基因组图谱网络 (TCGA) 终末呼吸单位 (TRU)、近端炎症 (PI) 和近端增殖 (PP) 亚型,与预后相关,但在稳健的临床应用中存在方法学限制。我们旨在开发一种独立于平台的单一样本预测器 (SSP),用于分子亚型分配和风险分层,可在临床环境中使用。使用 AIMS 算法在来自公共存储库的 1655 例 AC(n = 9659 个基因)中训练了两分类(TRU/非 TRU=SSP2)和三分类(TRU/PP/PI=SSP3)SSP,并在 977 例患者中使用总生存期 (OS) 和无远处转移生存期 (DMFS) 作为终点进行验证和生存分析。在验证队列中,SSP2 和 SSP3 的准确率分别为 0.85 和 0.81。SSP 捕获了先前与 TCGA 亚型相关的相关生物学,并与预后相关。在生存分析中,TCGA 和 SSP2 之间分类不一致的病例的 OS 和 DMFS 有利于 SSP2 分类。在 I 期切除的患者中,SSP2 确定了 OS 更好的 TRU 病例(风险比 [HR] = 0.30;95%置信区间 [CI] = 0.18-0.49)和 DMFS(TRU HR = 0.52;95% CI = 0.33-0.83),独立于年龄、IA/IB 期和性别。SSP2 被转化为 NanoString nCounter 测定,并使用来自福尔马林固定组织的 RNA 在 44 例 I 期患者中进行了测试,提供了预后分层(无复发生存期,HR = 3.2;95% CI = 1.2-8.8)。总之,基于基因表达的 SSP 可在早期肺 AC 中提供分子亚型和独立的预后信息。SSP 可能克服了肺癌基因特征应用中的关键限制。