A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., 664033, Irkutsk, Russia.
A.P. Vinogradov Institute of Geochemistry, Siberian Branch, Russian Academy of Sciences, 1a, Favorsky Str., 664033, Irkutsk, Russia.
IET Nanobiotechnol. 2020 Aug;14(6):519-526. doi: 10.1049/iet-nbt.2020.0023.
In the present study, water-soluble hybrid selenium-containing nanocomposites have been synthesised via soft oxidation of selenide-anions, preliminarily generated from elemental bulk-selenium in the base-reduction system 'NH-NaOH'. The nanocomposites obtained consist of SeNPs (4.6-24.5 nm) stabilised by κ-carrageenan biocompatible polysaccharide. The structure of these composite nanomaterials has been proven using complementary physical-chemical methods: X-ray diffraction analysis, transmission electron microscopy, optical spectroscopy, and dynamic light scattering. Optical ranges of 'emission/excitation' of aqueous solutions of nanocomposites with SeNPs of different sizes are established and the most important parameters of their luminescence are determined. For the obtained nanocomposites, the expressed antiradical activity against free radicals 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid has been found, the value of which depends on the size of selenium nanoparticles. It is experimentally revealed that all obtained nanocomposites are low toxic (LD >2000 mg/kg). It is also found that small selenium nanoparticles (6.8 nm), in contrast to larger nanoparticles (24.5 nm), are accumulated in organisms to significantly increase the level of selenium in the liver, kidneys, and brain (in lesser amounts) of rats.
在本研究中,通过在碱性还原体系 'NH-NaOH' 中元素块状硒初步生成的硒化物阴离子的软氧化,合成了水溶性杂化含硒纳米复合材料。所得到的纳米复合材料由 κ-卡拉胶生物相容多糖稳定的硒纳米颗粒 (SeNPs) 组成。这些复合纳米材料的结构已通过互补的物理化学方法证明:X 射线衍射分析、透射电子显微镜、光学光谱和动态光散射。确定了不同尺寸的 SeNPs 水溶胶纳米复合材料的“发射/激发”光学范围,并确定了其发光的最重要参数。对于所获得的纳米复合材料,发现其具有针对自由基 2,2-二苯基-1-苦基肼和 2,2'-联氮双(3-乙基苯并噻唑啉-6-磺酸)的表达抗氧化活性,其值取决于硒纳米颗粒的尺寸。实验表明,所有获得的纳米复合材料均具有低毒性 (LD >2000mg/kg)。还发现,与较大的纳米颗粒 (24.5nm) 相比,小的硒纳米颗粒 (6.8nm) 在生物体中积累,可显著增加大鼠肝脏、肾脏和大脑 (少量) 中的硒水平。