Dong Bowei, Shi Qiongfeng, He Tianyiyi, Zhu Shiyang, Zhang Zixuan, Sun Zhongda, Ma Yiming, Kwong Dim-Lee, Lee Chengkuo
Department of Electrical and Computer Engineering National University of Singapore 4 Engineering Drive 3 Singapore 117576 Singapore.
Center for Intelligent Sensors and MEMS National University of Singapore 5 Engineering Drive 1 Singapore 117608 Singapore.
Adv Sci (Weinh). 2020 Jun 19;7(15):1903636. doi: 10.1002/advs.201903636. eCollection 2020 Aug.
Wearable photonics offer a promising platform to complement the thriving complex wearable electronics system by providing high-speed data transmission channels and robust optical sensing paths. Regarding the realization of photonic computation and tunable (de)multiplexing functions based on system-level integration of abundant photonic modulators, it is challenging to reduce the overwhelming power consumption in traditional current-based silicon photonic modulators. This issue is addressed by integrating voltage-based aluminum nitride (AlN) modulator and textile triboelectric nanogenerator (T-TENG) on a wearable platform to form a nano-energy-nano-system (NENS). The T-TENG transduces the mechanical stimulations into electrical signals based on the coupling of triboelectrification and electrostatic induction. The self-generated high-voltage from the T-TENG is applied to the AlN modulator and boosts its modulation efficiency regardless of AlN's moderate Pockels effect. Complementarily, the AlN modulator's capacitive nature enables the open-circuit operation mode of T-TENG, providing the integrated NENS with continuous force sensing capability which is notably uninfluenced by operation speeds. Furthermore, a physical model is proposed to describe the coupled AlN modulator/T-TENG system. With the enhanced photonic modulation and the open-circuit operation mode enabled by synergies between the AlN modulator and the T-TENG, optical Morse code transmission and continuous human motion monitoring are demonstrated for practical wearable applications.
可穿戴光子学提供了一个很有前景的平台,通过提供高速数据传输通道和强大的光学传感路径来补充蓬勃发展的复杂可穿戴电子系统。关于基于丰富光子调制器的系统级集成来实现光子计算和可调谐(解)复用功能,降低传统基于电流的硅光子调制器中过高的功耗具有挑战性。通过在可穿戴平台上集成基于电压的氮化铝(AlN)调制器和织物摩擦纳米发电机(T-TENG),形成一个纳米能源-纳米系统(NENS)来解决这个问题。T-TENG基于摩擦起电和静电感应的耦合将机械刺激转换为电信号。T-TENG产生的自发电高压被施加到AlN调制器上,提高其调制效率,而不管AlN的普克尔效应适中。作为补充,AlN调制器的电容特性实现了T-TENG的开路运行模式,为集成的NENS提供了连续的力传感能力,这一能力明显不受运行速度的影响。此外,还提出了一个物理模型来描述耦合的AlN调制器/T-TENG系统。通过AlN调制器和T-TENG之间的协同作用实现了增强的光子调制和开路运行模式,展示了用于实际可穿戴应用的光学莫尔斯码传输和连续人体运动监测。