Suppr超能文献

通过快速感应加热法控制尺寸合成铁及氧化铁纳米颗粒

Size-Controlled Synthesis of Iron and Iron Oxide Nanoparticles by the Rapid Inductive Heating Method.

作者信息

Sharma Pratikshya, Holliger Noah, Pfromm Peter Heinz, Liu Bin, Chikan Viktor

机构信息

Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States.

Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, United States.

出版信息

ACS Omega. 2020 Jul 29;5(31):19853-19860. doi: 10.1021/acsomega.0c02793. eCollection 2020 Aug 11.

Abstract

Inductive heating synthesis is an emerging technique with the potential to displace the hot-injection synthesis method to prepare colloidal particles very rapidly with a narrow size distribution, controlled size, and high crystallinity. In this work, the inductive heating synthesis is applied to produce a short-temperature jump to mimic conditions like the hot-injection method to prepare traditional iron and iron oxide nanoparticles (IONPs) in the 3-11 nm size range within various solvents, precursors, and reaction time conditions. Moreover, this inductive heating technique can be used under unique experimental conditions not available for hot-injection reactions. These conditions include the use of very high initial monomer concentrations. Considering benefits over conventional methods, the inductive heating technique has the potential to provide an industrial level scale-up synthesis. The magnetization of these particles is consistent with the magnetization of the particles from the literature.

摘要

感应加热合成是一种新兴技术,有潜力取代热注入合成法,能够非常快速地制备出尺寸分布窄、尺寸可控且结晶度高的胶体颗粒。在这项工作中,感应加热合成被用于产生一个短时间的温度跃升,以模拟热注入法的条件,从而在各种溶剂、前驱体和反应时间条件下制备尺寸范围在3-11纳米的传统铁和氧化铁纳米颗粒(IONPs)。此外,这种感应加热技术可在热注入反应无法实现的独特实验条件下使用。这些条件包括使用非常高的初始单体浓度。考虑到相对于传统方法的优势,感应加热技术有潜力实现工业规模的放大合成。这些颗粒的磁化强度与文献中颗粒的磁化强度一致。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e0e/7424720/ff49a5f206c3/ao0c02793_0001.jpg

相似文献

1
Size-Controlled Synthesis of Iron and Iron Oxide Nanoparticles by the Rapid Inductive Heating Method.
ACS Omega. 2020 Jul 29;5(31):19853-19860. doi: 10.1021/acsomega.0c02793. eCollection 2020 Aug 11.
2
Inductive Heating Enhances Ripening in the Aqueous Synthesis of Magnetic Nanoparticles.
Cryst Growth Des. 2023 Jan 4;23(1):59-67. doi: 10.1021/acs.cgd.2c00694. Epub 2022 Dec 13.
4
Synthesis of phase-pure and monodisperse iron oxide nanoparticles by thermal decomposition.
Nanoscale. 2015 Jul 7;7(25):11142-54. doi: 10.1039/c5nr01651g.
5
One pot synthesis of monodisperse water soluble iron oxide nanocrystals with high values of the specific absorption rate.
J Mater Chem B. 2014 Jul 28;2(28):4426-4434. doi: 10.1039/c4tb00061g. Epub 2014 Jun 13.
6
Burst nucleation by hot injection for size controlled synthesis of ε-cobalt nanoparticles.
Chem Cent J. 2016 Mar 8;10:10. doi: 10.1186/s13065-016-0156-1. eCollection 2016.
7
Inductive heating with magnetic materials inside flow reactors.
Chemistry. 2011 Feb 7;17(6):1884-93. doi: 10.1002/chem.201002291. Epub 2011 Jan 7.
8
Ethylene diamine-assisted synthesis of iron oxide nanoparticles in high-boiling polyolys.
J Colloid Interface Sci. 2014 Mar 1;417:188-98. doi: 10.1016/j.jcis.2013.11.023. Epub 2013 Nov 19.
9
Rapid size-controlled synthesis of dextran-coated, 64Cu-doped iron oxide nanoparticles.
ACS Nano. 2012 Apr 24;6(4):3461-7. doi: 10.1021/nn300494k. Epub 2012 Mar 30.
10
GO-Functionalized Large Magnetic Iron Oxide Nanoparticles with Enhanced Colloidal Stability and Hyperthermia Performance.
ACS Appl Mater Interfaces. 2019 Jun 26;11(25):22703-22713. doi: 10.1021/acsami.9b04261. Epub 2019 Jun 17.

引用本文的文献

1
Molecular dynamics simulations of thermal transport in metals using a two-temperature model.
J Mol Model. 2025 Jul 26;31(8):220. doi: 10.1007/s00894-025-06433-5.
3
Luminescent porous silicon decorated with iron oxide nanoparticles synthesized by pulsed laser ablation.
RSC Adv. 2025 Jun 5;15(24):19000-19012. doi: 10.1039/d5ra01448d. eCollection 2025 Jun 4.
4
Design and Application of Joule Heating Processes for Decarbonized Chemical and Advanced Material Synthesis.
Ind Eng Chem Res. 2024 Nov 4;63(45):19398-19417. doi: 10.1021/acs.iecr.4c02460. eCollection 2024 Nov 13.
5
Precise air oxidation for continuous production of superparamagnetic FeO nanoparticles at room temperature through a microfilm reactor.
RSC Adv. 2024 Oct 29;14(46):34320-34327. doi: 10.1039/d4ra05373g. eCollection 2024 Oct 23.
7
A narrative review of the synthesis, characterization, and applications of iron oxide nanoparticles.
Discov Nano. 2023 Oct 10;18(1):125. doi: 10.1186/s11671-023-03898-2.
8
Tuneable manganese oxide nanoparticle based theranostic agents for potential diagnosis and drug delivery.
Nanoscale Adv. 2021 Jun 7;3(14):4052-4061. doi: 10.1039/d0na00991a. eCollection 2021 Jul 13.
9
Ultrafast Preparation of Nonequilibrium FeNi Spinels by Magnetic Induction Heating for Unprecedented Oxygen Evolution Electrocatalysis.
Research (Wash D C). 2022 Jun 1;2022:9756983. doi: 10.34133/2022/9756983. eCollection 2022.
10
Assisted Synthesis of Coated Iron Oxide Nanoparticles for Magnetic Hyperthermia.
Nanomaterials (Basel). 2022 May 30;12(11):1870. doi: 10.3390/nano12111870.

本文引用的文献

1
Rapid Induction and Microwave Heat-Up Syntheses of CdSe Quantum Dots.
ACS Omega. 2018 May 21;3(5):5399-5405. doi: 10.1021/acsomega.8b00096. eCollection 2018 May 31.
3
Rapid Nanoparticle Synthesis by Magnetic and Microwave Heating.
Nanomaterials (Basel). 2016 May 5;6(5):85. doi: 10.3390/nano6050085.
4
Thermal Decomposition Synthesis of Iron Oxide Nanoparticles with Diminished Magnetic Dead Layer by Controlled Addition of Oxygen.
ACS Nano. 2017 Feb 28;11(2):2284-2303. doi: 10.1021/acsnano.7b00609. Epub 2017 Feb 14.
5
Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications.
Sci Technol Adv Mater. 2015 Apr 28;16(2):023501. doi: 10.1088/1468-6996/16/2/023501. eCollection 2015 Apr.
6
Synthesis, characterization, applications, and challenges of iron oxide nanoparticles.
Nanotechnol Sci Appl. 2016 Aug 19;9:49-67. doi: 10.2147/NSA.S99986. eCollection 2016.
8
Alternative low-cost approach to the synthesis of magnetic iron oxide nanoparticles by thermal decomposition of organic precursors.
Nanotechnology. 2013 May 3;24(17):175601. doi: 10.1088/0957-4484/24/17/175601. Epub 2013 Apr 3.
9
Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies.
Nanoscale Res Lett. 2008 Oct 2;3(11):397-415. doi: 10.1007/s11671-008-9174-9.
10
Vacancy ordering and electronic structure of γ-Fe₂O₃ (maghemite): a theoretical investigation.
J Phys Condens Matter. 2010 Jun 30;22(25):255401. doi: 10.1088/0953-8984/22/25/255401. Epub 2010 Jun 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验