Suppr超能文献

通过磁热和微波加热实现纳米颗粒的快速合成

Rapid Nanoparticle Synthesis by Magnetic and Microwave Heating.

作者信息

Chikan Viktor, McLaurin Emily J

机构信息

Department of Chemistry, Kansas State University, 213 CBC Building, Manhattan, KS 66506-0401, USA.

出版信息

Nanomaterials (Basel). 2016 May 5;6(5):85. doi: 10.3390/nano6050085.

Abstract

Traditional hot-injection (HI) syntheses of colloidal nanoparticles (NPs) allows good separation of the nucleation and growth stages of the reaction, a key limitation in obtaining monodisperse NPs, but with limited scalability. Here, two methods are presented for obtaining NPs via rapid heating: magnetic and microwave-assisted. Both of these techniques provide improved engineering control over the separation of nucleation and growth stages of nanomaterial synthesis when the reaction is initiated from room temperature. The advantages of these techniques with preliminary data are presented in this prospective article. It is shown here that microwave assisted heating could possibly provide some selectivity in activating the nanomaterial precursor materials, while magnetic heating can produce very tiny particles in a very short time (even on the millisecond timescale), which is important for scalability. The fast magnetic heating also allows for synthesizing larger particles with improved size distribution, therefore impacting, not only the quantity, but the quality of the nanomaterials.

摘要

传统的热注入(HI)合成胶体纳米颗粒(NPs)能够很好地分离反应的成核和生长阶段,这是获得单分散纳米颗粒的一个关键限制因素,但其可扩展性有限。本文介绍了两种通过快速加热获得纳米颗粒的方法:磁辅助法和微波辅助法。当反应从室温开始时,这两种技术都能在纳米材料合成的成核和生长阶段分离方面提供更好的工程控制。本文前瞻性地介绍了这些技术的优势及初步数据。结果表明,微波辅助加热可能在激活纳米材料前驱体方面具有一定的选择性,而磁加热能在极短时间内(甚至在毫秒时间尺度上)产生非常微小的颗粒,这对可扩展性很重要。快速磁加热还能合成尺寸分布更优的较大颗粒,因此不仅影响纳米材料的数量,还影响其质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6234/5302497/86606695af05/nanomaterials-06-00085-g001.jpg

相似文献

1
Rapid Nanoparticle Synthesis by Magnetic and Microwave Heating.
Nanomaterials (Basel). 2016 May 5;6(5):85. doi: 10.3390/nano6050085.
2
Beneficial effects of microwave-assisted heating versus conventional heating in noble metal nanoparticle synthesis.
ACS Nano. 2012 Nov 27;6(11):9433-46. doi: 10.1021/nn3038918. Epub 2012 Oct 10.
3
Microwave-assisted chemistry: synthetic applications for rapid assembly of nanomaterials and organics.
Acc Chem Res. 2014 Apr 15;47(4):1338-48. doi: 10.1021/ar400309b. Epub 2014 Mar 25.
4
Ultrafast Preparation of Monodisperse Fe3 O4 Nanoparticles by Microwave-Assisted Thermal Decomposition.
Chemistry. 2016 Aug 8;22(33):11807-15. doi: 10.1002/chem.201601434. Epub 2016 Jul 6.
5
Rapid Induction and Microwave Heat-Up Syntheses of CdSe Quantum Dots.
ACS Omega. 2018 May 21;3(5):5399-5405. doi: 10.1021/acsomega.8b00096. eCollection 2018 May 31.
6
Rapid one-step synthesis of carbon-supported platinum-copper nanoparticles with enhanced electrocatalytic activity via microwave-assisted heating.
J Colloid Interface Sci. 2020 Aug 15;574:421-429. doi: 10.1016/j.jcis.2020.04.041. Epub 2020 Apr 10.
9
Microwave Flow Chemistry as a Methodology in Organic Syntheses, Enzymatic Reactions, and Nanoparticle Syntheses.
Chem Rec. 2019 Jan;19(1):118-139. doi: 10.1002/tcr.201800062. Epub 2018 Oct 2.
10
From Silver Plates to Spherical Nanoparticles: Snapshots of Microwave-Assisted Polyol Synthesis.
ACS Omega. 2020 Mar 10;5(11):5731-5738. doi: 10.1021/acsomega.9b03748. eCollection 2020 Mar 24.

引用本文的文献

2
Microwave-Fluidic Continuous Manufacturing of Ultrasmall Silver Nanoparticles in a Polycaprolactone Matrix as Antibacterial Coatings.
ACS Omega. 2025 May 1;10(18):18213-18224. doi: 10.1021/acsomega.4c03612. eCollection 2025 May 13.
3
Synthesis and Unique Behaviors of High-Purity HEA Nanoparticles Using Femtosecond Laser Ablation.
Nanomaterials (Basel). 2024 Mar 21;14(6):554. doi: 10.3390/nano14060554.
5
Pharmaceutical Aspects of Nanocarriers for Smart Anticancer Therapy.
Pharmaceutics. 2021 Nov 5;13(11):1875. doi: 10.3390/pharmaceutics13111875.
6
Natural Kaolin-Based Ni Catalysts for CO Methanation: On the Effect of Ce Enhancement and Microwave-Assisted Hydrothermal Synthesis.
ACS Omega. 2021 May 18;6(21):13779-13794. doi: 10.1021/acsomega.1c01231. eCollection 2021 Jun 1.
7
Influence of Irradiation Time on the Structural and Optical Characteristics of CuSe Nanoparticles Synthesized via Microwave-Assisted Technique.
ACS Omega. 2021 Apr 12;6(16):10698-10708. doi: 10.1021/acsomega.1c00148. eCollection 2021 Apr 27.
8
Enhancing Cancer Immunotherapy Treatment Goals by Using Nanoparticle Delivery System.
Int J Nanomedicine. 2021 Mar 25;16:2389-2404. doi: 10.2147/IJN.S295300. eCollection 2021.
9
Size-Controlled Synthesis of Iron and Iron Oxide Nanoparticles by the Rapid Inductive Heating Method.
ACS Omega. 2020 Jul 29;5(31):19853-19860. doi: 10.1021/acsomega.0c02793. eCollection 2020 Aug 11.
10
Rapid Induction and Microwave Heat-Up Syntheses of CdSe Quantum Dots.
ACS Omega. 2018 May 21;3(5):5399-5405. doi: 10.1021/acsomega.8b00096. eCollection 2018 May 31.

本文引用的文献

1
Specific effects in microwave chemistry explored through reactor vessel design, theory, and spectroscopy.
Phys Chem Chem Phys. 2015 Nov 7;17(41):27317-27. doi: 10.1039/c5cp03961d.
2
Mechanisms of nucleation and growth of nanoparticles in solution.
Chem Rev. 2014 Aug 13;114(15):7610-30. doi: 10.1021/cr400544s. Epub 2014 Jul 8.
3
Microwave-assisted preparation of inorganic nanostructures in liquid phase.
Chem Rev. 2014 Jun 25;114(12):6462-555. doi: 10.1021/cr400366s. Epub 2014 Jun 4.
4
Microwave-assisted chemistry: synthetic applications for rapid assembly of nanomaterials and organics.
Acc Chem Res. 2014 Apr 15;47(4):1338-48. doi: 10.1021/ar400309b. Epub 2014 Mar 25.
5
Design and evaluation of improved magnetic stir bars for single-mode microwave reactors.
Org Biomol Chem. 2013 Aug 14;11(30):4949-56. doi: 10.1039/c3ob40790j. Epub 2013 Jun 25.
6
Unraveling the mysteries of microwave chemistry using silicon carbide reactor technology.
Acc Chem Res. 2013 Jul 16;46(7):1579-87. doi: 10.1021/ar300318c. Epub 2013 Mar 6.
7
How to measure reaction temperature in microwave-heated transformations.
Chem Soc Rev. 2013 Jun 21;42(12):4977-90. doi: 10.1039/c3cs00010a.
8
Microwave-assisted synthesis of colloidal inorganic nanocrystals.
Angew Chem Int Ed Engl. 2011 Nov 25;50(48):11312-59. doi: 10.1002/anie.201101274. Epub 2011 Nov 4.
9
Microwave-assisted green synthesis of silver nanostructures.
Acc Chem Res. 2011 Jul 19;44(7):469-78. doi: 10.1021/ar1001457. Epub 2011 Apr 28.
10
Future trends in microwave synthesis.
Future Med Chem. 2010 Feb;2(2):151-5. doi: 10.4155/fmc.09.133.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验