Michelson Matthew, Chow Tiffany, Martin Neil A, Ross Mike, Tee Qiao Ying Amelia, Minton Steven
Evid Science, El Segundo, CA, United States.
InferLink, El Segundo, CA, United States.
J Med Internet Res. 2020 Aug 17;22(8):e20007. doi: 10.2196/20007.
Rapid access to evidence is crucial in times of an evolving clinical crisis. To that end, we propose a novel approach to answer clinical queries, termed rapid meta-analysis (RMA). Unlike traditional meta-analysis, RMA balances a quick time to production with reasonable data quality assurances, leveraging artificial intelligence (AI) to strike this balance.
We aimed to evaluate whether RMA can generate meaningful clinical insights, but crucially, in a much faster processing time than traditional meta-analysis, using a relevant, real-world example.
The development of our RMA approach was motivated by a currently relevant clinical question: is ocular toxicity and vision compromise a side effect of hydroxychloroquine therapy? At the time of designing this study, hydroxychloroquine was a leading candidate in the treatment of coronavirus disease (COVID-19). We then leveraged AI to pull and screen articles, automatically extract their results, review the studies, and analyze the data with standard statistical methods.
By combining AI with human analysis in our RMA, we generated a meaningful, clinical result in less than 30 minutes. The RMA identified 11 studies considering ocular toxicity as a side effect of hydroxychloroquine and estimated the incidence to be 3.4% (95% CI 1.11%-9.96%). The heterogeneity across individual study findings was high, which should be taken into account in interpretation of the result.
We demonstrate that a novel approach to meta-analysis using AI can generate meaningful clinical insights in a much shorter time period than traditional meta-analysis.
在临床危机不断演变的时期,快速获取证据至关重要。为此,我们提出了一种新颖的方法来回答临床问题,即快速荟萃分析(RMA)。与传统荟萃分析不同,RMA在保证合理数据质量的同时平衡了快速产出的时间,利用人工智能(AI)来实现这种平衡。
我们旨在评估RMA是否能够产生有意义的临床见解,但关键的是,使用一个相关的真实世界例子,其处理时间要比传统荟萃分析快得多。
我们的RMA方法的开发源于一个当前相关的临床问题:眼毒性和视力损害是否是羟氯喹治疗的副作用?在设计本研究时,羟氯喹是治疗冠状病毒病(COVID-19)的主要候选药物。然后,我们利用人工智能来检索和筛选文章,自动提取其结果,审查研究,并使用标准统计方法分析数据。
通过在我们的RMA中将人工智能与人工分析相结合,我们在不到30分钟的时间内得出了一个有意义的临床结果。RMA确定了11项将眼毒性视为羟氯喹副作用的研究,并估计其发生率为3.4%(95%CI 1.11%-9.96%)。各个研究结果之间的异质性较高,在解释结果时应予以考虑。
我们证明,一种使用人工智能的新颖荟萃分析方法能够在比传统荟萃分析短得多的时间内产生有意义的临床见解。