Suppr超能文献

机器学习方法揭示了狗的饮食和性别相关的微生物特征。

Learning machine approach reveals microbial signatures of diet and sex in dog.

机构信息

Department of AgroFood, Environmental and Animal Sciences, University of Udine, Udine, Italy.

ARGO Open Lab Platform for Genome sequencing, AREA Science Park, Padriciano, Trieste, Italy.

出版信息

PLoS One. 2020 Aug 17;15(8):e0237874. doi: 10.1371/journal.pone.0237874. eCollection 2020.

Abstract

The characterization of the microbial population of many niches of the organism, as the gastrointestinal tract, is now possible thanks to the use of high-throughput DNA sequencing technique. Several studies in the companion animals field already investigated faecal microbiome in healthy or affected subjects, although the methodologies used in the different laboratories and the limited number of animals recruited in each experiment does not allow a straight comparison among published results. In the present study, we report data collected from several in house researches carried out in healthy dogs, with the aim to seek for a variability of microbial taxa in the faeces, caused by factors such as diet and sex. The database contains 340 samples from 132 dogs, collected serially during dietary intervention studies. The procedure of samples collection, storage, DNA extraction and sequencing, bioinformatic and statistical analysis followed a standardized pipeline. Microbial profiles of faecal samples have been analyzed applying dimensional reduction discriminant analysis followed by random forest analysis to the relative abundances of genera in the feces as variables. The results supported the responsiveness of microbiota at a genera taxonomic level to dietary factor and allowed to cluster dogs according this factor with high accuracy. Also sex factor clustered dogs, with castrated males and spayed females forming a separated group in comparison to intact dogs, strengthening the hypothesis of a bidirectional interaction between microbiota and endocrine status of the host. The findings of the present analysis are promising for a better comprehension of the mechanisms that regulate the connection of the microorganisms living the gastrointestinal tract with the diet and the host. This preliminary study deserves further investigation for the identification of the factors affecting faecal microbiome in dogs.

摘要

由于高通量 DNA 测序技术的使用,现在可以对生物体许多生态位的微生物种群进行特征描述,如胃肠道。尽管不同实验室使用的方法和每个实验中招募的动物数量有限,但伴侣动物领域的几项研究已经调查了健康或患病动物的粪便微生物组,这使得发表的结果无法直接进行比较。在本研究中,我们报告了从健康犬进行的多项内部研究中收集的数据,目的是寻找粪便中微生物类群的变化,这些变化是由饮食和性别等因素引起的。该数据库包含 132 只狗的 340 个样本,这些样本是在饮食干预研究中连续收集的。样本采集、储存、DNA 提取和测序、生物信息学和统计分析的过程遵循标准化的流程。采用降维判别分析和随机森林分析对粪便中属的相对丰度进行分析,对粪便样本的微生物谱进行了分析。结果表明,微生物群在属分类水平上对饮食因素有反应,并可以根据该因素准确地对狗进行聚类。性别因素也使狗聚类,去势雄性和去势雌性与未去势的狗形成一个单独的组,这加强了微生物群与宿主内分泌状态之间双向相互作用的假说。本分析的结果为更好地理解调节胃肠道中微生物与饮食和宿主之间联系的机制提供了希望。这项初步研究值得进一步调查,以确定影响狗粪便微生物组的因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/401d/7431105/52ea032a766e/pone.0237874.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验