Suppr超能文献

基于主体建模用于严重急性呼吸综合征冠状病毒2(SARS-CoV-2)疫情预测与干预评估:方法学评价

Agent-based modelling for SARS-CoV-2 epidemic prediction and intervention assessment: A methodological appraisal.

作者信息

Maziarz Mariusz, Zach Martin

机构信息

Interdisciplinary Centre for Ethics, Jagiellonian University, Kraków, Poland.

Institute of Philosophy, Jagiellonian University, Kraków, Poland.

出版信息

J Eval Clin Pract. 2020 Oct;26(5):1352-1360. doi: 10.1111/jep.13459. Epub 2020 Aug 21.

Abstract

BACKGROUND

Our purpose is to assess epidemiological agent-based models-or ABMs-of the SARS-CoV-2 pandemic methodologically. The rapid spread of the outbreak requires fast-paced decision-making regarding mitigation measures. However, the evidence for the efficacy of non-pharmaceutical interventions such as imposed social distancing and school or workplace closures is scarce: few observational studies use quasi-experimental research designs, and conducting randomized controlled trials seems infeasible. Additionally, evidence from the previous coronavirus outbreaks of SARS and MERS lacks external validity, given the significant differences in contagiousness of those pathogens relative to SARS-CoV-2. To address the pressing policy questions that have emerged as a result of COVID-19, epidemiologists have produced numerous models that range from simple compartmental models to highly advanced agent-based models. These models have been criticized for involving simplifications and lacking empirical support for their assumptions.

METHODS

To address these voices and methodologically appraise epidemiological ABMs, we consider AceMod (the model of the COVID-19 epidemic in Australia) as a case study of the modelling practice.

RESULTS

Our example shows that, although epidemiological ABMs involve simplifications of various sorts, the key characteristics of social interactions and the spread of SARS-CoV-2 are represented sufficiently accurately. This is the case because these modellers treat empirical results as inputs for constructing modelling assumptions and rules that the agents follow; and they use calibration to assert the adequacy to benchmark variables.

CONCLUSIONS

Given this, we claim that the best epidemiological ABMs are models of actual mechanisms and deliver both mechanistic and difference-making evidence. Consequently, they may also adequately describe the effects of possible interventions. Finally, we discuss the limitations of ABMs and put forward policy recommendations.

摘要

背景

我们的目的是从方法学角度评估基于主体的新冠疫情流行病学模型(ABMs)。疫情的迅速蔓延需要就缓解措施做出快速决策。然而,诸如强制保持社交距离以及关闭学校或工作场所等非药物干预措施有效性的证据却很匮乏:很少有观察性研究采用准实验研究设计,而且进行随机对照试验似乎并不可行。此外,鉴于严重急性呼吸综合征(SARS)和中东呼吸综合征(MERS)等先前冠状病毒疫情中的病原体与新冠病毒在传染性方面存在显著差异,其证据缺乏外部有效性。为解决因2019冠状病毒病(COVID - 19)而出现的紧迫政策问题,流行病学家构建了众多模型,从简单的 compartments 模型到高度先进的基于主体的模型。这些模型因存在简化处理且其假设缺乏实证支持而受到批评。

方法

为回应这些质疑并从方法学角度评估流行病学ABMs,我们将AceMod(澳大利亚新冠疫情模型)作为建模实践的案例研究。

结果

我们的示例表明,尽管流行病学ABMs存在各种简化情况,但社交互动和新冠病毒传播的关键特征得到了足够准确的呈现。之所以如此,是因为这些建模者将实证结果作为构建主体所遵循的建模假设和规则的输入;并且他们使用校准来确定对标变量的充分性。

结论

鉴于此,我们认为最佳的流行病学ABMs是实际机制模型,能提供机制性证据和差异制造证据。因此,它们或许也能充分描述可能干预措施的效果。最后,我们讨论了ABMs的局限性并提出了政策建议。

相似文献

5
Uncertainty quantification in epidemiological models for the COVID-19 pandemic.新冠疫情流行病学模型中的不确定性量化。
Comput Biol Med. 2020 Oct;125:104011. doi: 10.1016/j.compbiomed.2020.104011. Epub 2020 Sep 25.
9
The Coronavirus Pandemic: What Does the Evidence Show?新冠疫情:证据表明了什么?
J Nepal Health Res Counc. 2020 Apr 19;18(1):1-9. doi: 10.33314/jnhrc.v18i1.2596.

引用本文的文献

3
Resilient Hospital Design: From Crimean War to COVID-19.弹性医院设计:从克里米亚战争到 COVID-19。
HERD. 2023 Oct;16(4):36-55. doi: 10.1177/19375867231174238. Epub 2023 May 10.
9
Mathematical modeling and estimation for next wave of COVID-19 in Poland.波兰新冠肺炎疫情下一波的数学建模与预测
Stoch Environ Res Risk Assess. 2022;36(9):2495-2501. doi: 10.1007/s00477-021-02119-5. Epub 2021 Nov 26.

本文引用的文献

1
Social distancing and supply disruptions in a pandemic.大流行期间的社交距离和供应中断。
Quant Econom. 2022 May;13(2):681-721. doi: 10.3982/QE1618. Epub 2022 May 25.
4
Modelling the pandemic.对疫情进行建模。
BMJ. 2020 Apr 21;369:m1567. doi: 10.1136/bmj.m1567.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验