Suppr超能文献

波兰新冠肺炎疫情下一波的数学建模与预测

Mathematical modeling and estimation for next wave of COVID-19 in Poland.

作者信息

Arti M K, Wilinski Antoni

机构信息

NSUT East Campus (AIACTR), New Delhi, India.

WSB University in Gdansk, Gdansk, Poland.

出版信息

Stoch Environ Res Risk Assess. 2022;36(9):2495-2501. doi: 10.1007/s00477-021-02119-5. Epub 2021 Nov 26.

Abstract

We investigate the problem of mathematical modeling of new corona virus (COVID-19) in Poland and tries to predict the upcoming wave. A Gaussian mixture model is proposed to characterize the COVID-19 disease and to predict a new / future wave of COVID-19. This prediction is very much needed to prepare for medical setup and continue with the upcoming program. Specifically, data related to the new confirmed cases of COVID-19 per day are considered, and then we attempt to predict the data and statistical activity. A close match between actual data and analytical data by using the Gaussian mixture model shows that it is a suitable model to present new cases of COVID-19. In addition, it is thought that there are N waves of COVID-19 and that information for each future wave is also present in current and previous waves as well. Using this concept, predictions of a future wave can be made.

摘要

我们研究了波兰新型冠状病毒(COVID-19)的数学建模问题,并试图预测即将到来的疫情高峰。提出了一种高斯混合模型来表征COVID-19疾病,并预测新的/未来的COVID-19疫情高峰。为医疗准备工作和后续计划的推进,这种预测非常必要。具体而言,我们考虑了与每日新增COVID-19确诊病例相关的数据,然后尝试预测这些数据和统计活动。通过使用高斯混合模型,实际数据与分析数据之间的紧密匹配表明,它是呈现COVID-19新病例的合适模型。此外,人们认为COVID-19会出现N波疫情,并且每一波未来疫情的信息也存在于当前和之前的疫情中。利用这一概念,可以对未来的疫情高峰进行预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9288/8624632/931e5e66f636/477_2021_2119_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验