Suppr超能文献

对双重刺激有运动响应的镁基微马达

Mg-Based Micromotors with Motion Responsive to Dual Stimuli.

作者信息

Xiong Kang, Xu Leilei, Lin Jinwei, Mou Fangzhi, Guan Jianguo

机构信息

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China.

出版信息

Research (Wash D C). 2020 Aug 4;2020:6213981. doi: 10.34133/2020/6213981. eCollection 2020.

Abstract

Mg-based micromotors have emerged as an extremely attractive artificial micro/nanodevice, but suffered from uncontrollable propulsion and limited motion lifetime, restricting the fulfillment of complex tasks. Here, we have demonstrated Mg-based micromotors composed of Mg microspheres asymmetrically coated with Pt and temperature-sensitive poly(N-isopropylacrylamide) (PNIPAM) hydrogel layers in sequence. They can implement different motion behaviors stemming from the driving mechanism transformation when encountering catalyzed substrates such as HO and respond to both HO concentration and temperature in aqueous environment. The as-constructed Mg-based micromotors are self-propelled by Pt-catalyzed HO decomposition following the self-consuming Mg-HO reaction. In this case, they could further generate bilateral bubbles and thus demonstrate unique self-limitation motion like hovering when the phase transformation of PNIPAM is triggered by decreasing temperature or when the HO concentration after permeating across the PNIPAM hydrogel layer is high enough to facilitate bubble nucleation. Our work for the first time provides a stimuli-induced "hovering" strategy for self-propelled micromotors, which endows Mg-based micromotors with an intelligent response to the surroundings besides the significant extension of their motion lifetime.

摘要

镁基微马达已成为极具吸引力的人工微纳器件,但存在推进不可控和运动寿命有限的问题,限制了复杂任务的完成。在此,我们展示了一种镁基微马达,它由镁微球依次不对称地包覆铂和温度敏感的聚(N-异丙基丙烯酰胺)(PNIPAM)水凝胶层组成。当遇到诸如过氧化氢(H₂O₂)等催化底物时,它们可因驱动机制转变而实现不同的运动行为,并能在水性环境中对H₂O₂浓度和温度作出响应。所构建的镁基微马达通过铂催化的H₂O₂分解以及自消耗的镁 - H₂O₂反应实现自推进。在这种情况下,当通过降低温度触发PNIPAM的相变,或者当透过PNIPAM水凝胶层后的H₂O₂浓度高到足以促进气泡成核时,它们会进一步产生双侧气泡,从而展现出如悬停般独特的自限运动。我们的工作首次为自推进微马达提供了一种刺激诱导的“悬停”策略,这不仅显著延长了镁基微马达的运动寿命,还赋予了它们对周围环境的智能响应能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4280/7424550/e91b4490643c/RESEARCH2020-6213981.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验