Suppr超能文献

印度新冠疫情的建模与预测

Modeling and forecasting the COVID-19 pandemic in India.

作者信息

Sarkar Kankan, Khajanchi Subhas, Nieto Juan J

机构信息

Department of Mathematics, Malda College, Malda, West Bengal 732101, India.

Department of Mathematics, Presidency University, 86/1 College Street, Kolkata 700073, India.

出版信息

Chaos Solitons Fractals. 2020 Oct;139:110049. doi: 10.1016/j.chaos.2020.110049. Epub 2020 Jun 28.

Abstract

In India, 100,340 confirmed cases and 3155 confirmed deaths due to COVID-19 were reported as of May 18, 2020. Due to absence of specific vaccine or therapy, non-pharmacological interventions including social distancing, contact tracing are essential to end the worldwide COVID-19. We propose a mathematical model that predicts the dynamics of COVID-19 in 17 provinces of India and the overall India. A complete scenario is given to demonstrate the estimated pandemic life cycle along with the real data or history to date, which in turn divulges the predicted inflection point and ending phase of SARS-CoV-2. The proposed model monitors the dynamics of six compartments, namely susceptible (S), asymptomatic (A), recovered (R), infected (I), isolated infected ( ) and quarantined susceptible ( ), collectively expressed . A sensitivity analysis is conducted to determine the robustness of model predictions to parameter values and the sensitive parameters are estimated from the real data on the COVID-19 pandemic in India. Our results reveal that achieving a reduction in the contact rate between uninfected and infected individuals by quarantined the susceptible individuals, can effectively reduce the basic reproduction number. Our model simulations demonstrate that the elimination of ongoing SARS-CoV-2 pandemic is possible by combining the restrictive social distancing and contact tracing. Our predictions are based on real data with reasonable assumptions, whereas the accurate course of epidemic heavily depends on how and when quarantine, isolation and precautionary measures are enforced.

摘要

截至2020年5月18日,印度报告了100340例新冠肺炎确诊病例和3155例确诊死亡病例。由于缺乏特定的疫苗或治疗方法,包括社交距离、接触者追踪在内的非药物干预措施对于终结全球新冠肺炎疫情至关重要。我们提出了一个数学模型,用于预测印度17个邦以及整个印度的新冠肺炎疫情动态。给出了一个完整的情景,以展示估计的疫情生命周期以及截至目前的实际数据或历史数据,进而揭示严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的预测拐点和结束阶段。所提出的模型监测六个 compartments,即易感者(S)、无症状者(A)、康复者(R)、感染者(I)、隔离感染者( )和检疫易感者( ),统称为 。进行了敏感性分析,以确定模型预测对参数值的稳健性,并根据印度新冠肺炎疫情的实际数据估计敏感参数。我们的结果表明,通过对易感者进行检疫来降低未感染者与感染者之间的接触率,可以有效降低基本再生数。我们的模型模拟表明,通过结合严格的社交距离和接触者追踪,有可能消除正在发生的SARS-CoV-2疫情。我们的预测基于具有合理假设的实际数据,而疫情的准确进程在很大程度上取决于检疫、隔离和预防措施的实施方式和时间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff5a/7321056/6ce5644b2fa1/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验