文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

放射学中的持续学习 AI:实施原则和早期应用。

Continuous Learning AI in Radiology: Implementation Principles and Early Applications.

机构信息

From the Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, FND-210, Boston, MA 02114-2698 (O.S.P., J.A.B.); International Society for Strategic Studies in Radiology (IS3R), Vienna, Austria (M.D., D.R.E., C.J.H., S.O.S., J.A.B.); Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria (G.L., C.J.H.); Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Boston, Mass (G.L.); Department of Radiology, Charité-Universitätsmedizin, Berlin, Germany (M.D.); Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Calif (D.R.E.); and Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany (S.O.S.).

出版信息

Radiology. 2020 Oct;297(1):6-14. doi: 10.1148/radiol.2020200038. Epub 2020 Aug 25.


DOI:10.1148/radiol.2020200038
PMID:32840473
Abstract

Artificial intelligence (AI) is becoming increasingly present in radiology and health care. This expansion is driven by the principal AI strengths: automation, accuracy, and objectivity. However, as radiology AI matures to become fully integrated into the daily radiology routine, it needs to go beyond replicating static models, toward discovering new knowledge from the data and environments around it. Continuous learning AI presents the next substantial step in this direction and brings a new set of opportunities and challenges. Herein, the authors discuss the main concepts and requirements for implementing continuous AI in radiology and illustrate them with examples from emerging applications.

摘要

人工智能(AI)在放射学和医疗保健领域的应用日益广泛。这一扩张主要得益于 AI 的三大优势:自动化、准确性和客观性。然而,随着放射学 AI 逐渐成熟并完全融入日常放射学常规,它需要超越复制静态模型,转而从其周围的数据和环境中发现新知识。持续学习 AI 是朝着这个方向迈出的下一个重要步骤,它带来了一系列新的机遇和挑战。在此,作者讨论了在放射学中实施持续 AI 的主要概念和要求,并通过新兴应用示例加以说明。

相似文献

[1]
Continuous Learning AI in Radiology: Implementation Principles and Early Applications.

Radiology. 2020-8-25

[2]
Artificial Intelligence and Machine Learning in Radiology: Opportunities, Challenges, Pitfalls, and Criteria for Success.

J Am Coll Radiol. 2018-2-4

[3]
Strengths, Weaknesses, Opportunities, and Threats Analysis of Artificial Intelligence and Machine Learning Applications in Radiology.

J Am Coll Radiol. 2019-9

[4]
Artificial Intelligence in Radiology: Current Technology and Future Directions.

Semin Musculoskelet Radiol. 2018-11

[5]
Implementation of artificial intelligence (AI) applications in radiology: hindering and facilitating factors.

Eur Radiol. 2020-10

[6]
Artificial Intelligence and Radiology: A Social Media Perspective.

Curr Probl Diagn Radiol. 2019

[7]
Canadian Association of Radiologists White Paper on Artificial Intelligence in Radiology.

Can Assoc Radiol J. 2018-4-11

[8]
Interpretable Artificial Intelligence: Why and When.

AJR Am J Roentgenol. 2020-3-4

[9]
How will "democratization of artificial intelligence" change the future of radiologists?

Jpn J Radiol. 2019-1

[10]
Artificial intelligence for precision education in radiology.

Br J Radiol. 2019-7-26

引用本文的文献

[1]
FetalMLOps: operationalizing machine learning models for standard fetal ultrasound plane classification.

Med Biol Eng Comput. 2025-9-8

[2]
Artificial intelligence in radiology: 173 commercially available products and their scientific evidence.

Eur Radiol. 2025-7-24

[3]
Diagnostic accuracy differences in detecting wound maceration between humans and artificial intelligence: the role of human expertise revisited.

J Am Med Inform Assoc. 2025-9-1

[4]
Leadership in radiology in the era of technological advancements and artificial intelligence.

Eur Radiol. 2025-6-27

[5]
Artificial Intelligence and Dentomaxillofacial Radiology Education: Innovations and Perspectives.

Dent J (Basel). 2025-5-29

[6]
Challenges and Future Perspectives for Artificial Intelligence in Hepatology: Breaking Barriers for Better Care.

J Clin Exp Hepatol. 2025

[7]
Machine learning models in the prediction of chronic or shunt-dependent hydrocephalus following subarachnoid hemorrhage: A systematic review and meta-analysis.

Neuroradiol J. 2025-5-22

[8]
Mitigating catastrophic forgetting in Multiple sclerosis lesion segmentation using elastic weight consolidation.

Neuroimage Clin. 2025

[9]
Medical machine learning operations: a framework to facilitate clinical AI development and deployment in radiology.

Eur Radiol. 2025-5-8

[10]
Evolution of an Artificial Intelligence-Powered Application for Mammography.

Diagnostics (Basel). 2025-3-24

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索