文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

可解释人工智能:为何与何时。

Interpretable Artificial Intelligence: Why and When.

机构信息

Department of Radiodiagnosis, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.

出版信息

AJR Am J Roentgenol. 2020 May;214(5):1137-1138. doi: 10.2214/AJR.19.22145. Epub 2020 Mar 4.


DOI:10.2214/AJR.19.22145
PMID:32130042
Abstract

The purpose of this article is to discuss the problem of interpretability of artificial intelligence (AI) and highlight the need for continuing scientific discovery using AI algorithms to deal with medical big data. A plethora of AI algorithms are currently being used in medical research, but the opacity of these algorithms makes their clinical implementation a dilemma. Clinical decision making cannot be assigned to something that we do not understand. Therefore, AI research should not be limited to reporting accuracy and sensitivity but, rather, should try to explain the underlying reasons for the predictions, in an attempt to enrich biologic understanding and knowledge.

摘要

本文旨在探讨人工智能(AI)的可解释性问题,并强调需要继续使用 AI 算法进行科学发现,以处理医疗大数据。目前,大量的 AI 算法正在被应用于医学研究中,但这些算法的不透明性使得它们在临床实施上面临困境。我们不能将临床决策交给我们不理解的东西。因此,人工智能研究不应仅限于报告准确性和敏感性,而应尝试解释预测的潜在原因,试图丰富生物学理解和知识。

相似文献

[1]
Interpretable Artificial Intelligence: Why and When.

AJR Am J Roentgenol. 2020-3-4

[2]
Artificial Intelligence and Machine Learning in Radiology: Opportunities, Challenges, Pitfalls, and Criteria for Success.

J Am Coll Radiol. 2018-2-4

[3]
Evolving scenario of big data and Artificial Intelligence (AI) in drug discovery.

Mol Divers. 2021-8

[4]
Artificial intelligence in medical imaging of the liver.

World J Gastroenterol. 2019-2-14

[5]
Role of Big Data and Machine Learning in Diagnostic Decision Support in Radiology.

J Am Coll Radiol. 2018-3

[6]
Artificial Intelligence, Machine Learning, Deep Learning, and Cognitive Computing: What Do These Terms Mean and How Will They Impact Health Care?

J Arthroplasty. 2018-2-27

[7]
Applications of Artificial Intelligence in Cardiology. The Future is Already Here.

Rev Esp Cardiol (Engl Ed). 2019-12

[8]
Deciphering musculoskeletal artificial intelligence for clinical applications: how do I get started?

Skeletal Radiol. 2022-2

[9]
Strengths, Weaknesses, Opportunities, and Threats Analysis of Artificial Intelligence and Machine Learning Applications in Radiology.

J Am Coll Radiol. 2019-9

[10]
Integrating Artificial and Human Intelligence: A Partnership for Responsible Innovation in Biomedical Engineering and Medicine.

OMICS. 2020-5

引用本文的文献

[1]
Primary Care Provider Preferences Regarding Artificial Intelligence in Point-of-Care Cancer Screening.

MDM Policy Pract. 2025-4-4

[2]
Dynamic, Interpretable, Machine Learning-Based Outcome Prediction as a New Emerging Opportunity in Acute Ischemic Stroke Patient Care: A Proof-of-Concept Study.

Stroke Res Treat. 2025-3-25

[3]
Integration of unpaired single cell omics data by deep transfer graph convolutional network.

PLoS Comput Biol. 2025-1-16

[4]
Predicting Bone Marrow Metastasis in Neuroblastoma: An Explainable Machine Learning Approach Using Contrast-Enhanced Computed Tomography Radiomics Features.

Technol Cancer Res Treat. 2024

[5]
Integrating Social Determinants of Health in Machine Learning-Driven Decision Support for Diabetes Case Management: Protocol for a Sequential Mixed Methods Study.

JMIR Res Protoc. 2024-9-25

[6]
SiGra: single-cell spatial elucidation through an image-augmented graph transformer.

Nat Commun. 2023-9-12

[7]
Application of Big Data and Artificial Intelligence in COVID-19 Prevention, Diagnosis, Treatment and Management Decisions in China.

J Med Syst. 2021-7-24

[8]
scGCN is a graph convolutional networks algorithm for knowledge transfer in single cell omics.

Nat Commun. 2021-6-22

[9]
Opportunities and challenges of artificial intelligence in the medical field: current application, emerging problems, and problem-solving strategies.

J Int Med Res. 2021-3

[10]
DSTG: deconvoluting spatial transcriptomics data through graph-based artificial intelligence.

Brief Bioinform. 2021-9-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索