King Abdullah University of Science and Technology (KAUST), Pathogen Genomics Laboratory, Biological and Environmental Science and Engineering (BESE), Thuwal-Jeddah, 23955-6900, Saudi Arabia.
King Abdullah University of Science and Technology (KAUST), Pathogen Genomics Laboratory, Biological and Environmental Science and Engineering (BESE), Thuwal-Jeddah, 23955-6900, Saudi Arabia; Clinical Microbiology Department, King Abdullah International Medical Research Centre, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia; King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.
Int J Infect Dis. 2020 Nov;100:216-223. doi: 10.1016/j.ijid.2020.08.052. Epub 2020 Aug 22.
The SARS-CoV-2 pathogen has established endemicity in humans. This necessitates the development of rapid genetic surveillance methodologies to serve as an adjunct with existing comprehensive, albeit though slower, genome sequencing-driven approaches.
A total of 21,789 complete genomes were downloaded from GISAID on May 28, 2020 for analyses. We have defined the major clades and subclades of circulating SARS-CoV-2 genomes. A rapid sequencing-based genotyping protocol was developed and tested on SARS-CoV-2-positive RNA samples by next-generation sequencing.
We describe 11 major mutations which defined five major clades (G, S, V, I and D) of globally circulating viral populations. The clades can specifically identify using an 11-nucleotide genetic barcode. An analysis of amino acid variation in SARS-CoV-2 proteins provided evidence of substitution events in the viral proteins involved in both host entry and genome replication.
Globally circulating SARS-CoV-2 genomes could be classified into 5 major clades based on mutational profiles defined by an 11-nucleotide barcode. We have successfully developed a multiplexed sequencing-based, rapid genotyping protocol for high-throughput classification of major clade types of SARS-CoV-2 in clinical samples. This barcoding strategy will be required to monitor decreases in genetic diversity as treatment and vaccine approaches become widely available.
SARS-CoV-2 病原体已在人类中建立了地方性。这需要开发快速的遗传监测方法,作为现有全面的、尽管较慢的、基于基因组测序的方法的辅助手段。
我们于 2020 年 5 月 28 日从 GISAID 下载了 21789 个完整的基因组进行分析。我们已经定义了循环 SARS-CoV-2 基因组的主要分支和亚分支。开发了一种快速基于测序的基因分型方案,并通过下一代测序对 SARS-CoV-2 阳性 RNA 样本进行了测试。
我们描述了 11 个主要突变,这些突变定义了全球循环病毒群体的 5 个主要分支(G、S、V、I 和 D)。这些分支可以通过 11 个核苷酸的遗传条码特异性识别。对 SARS-CoV-2 蛋白中的氨基酸变异分析提供了证据,表明参与宿主进入和基因组复制的病毒蛋白发生了取代事件。
根据 11 个核苷酸条码定义的突变特征,可将全球循环的 SARS-CoV-2 基因组分为 5 个主要分支。我们已经成功开发了一种基于多重测序的快速基因分型方案,用于临床样本中 SARS-CoV-2 主要分支类型的高通量分类。随着治疗和疫苗方法的广泛应用,这种条码策略将用于监测遗传多样性的降低。