Suppr超能文献

多层元匹配:将多个数据集的表型预测模型转化应用于小数据。

Multilayer meta-matching: Translating phenotypic prediction models from multiple datasets to small data.

作者信息

Chen Pansheng, An Lijun, Wulan Naren, Zhang Chen, Zhang Shaoshi, Ooi Leon Qi Rong, Kong Ru, Chen Jianzhong, Wu Jianxiao, Chopra Sidhant, Bzdok Danilo, Eickhoff Simon B, Holmes Avram J, Yeo B T Thomas

机构信息

Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.

Department of Electrical and Computer Engineering, National University of Singapore, Singapore.

出版信息

Imaging Neurosci (Camb). 2024 Jul 17;2. doi: 10.1162/imag_a_00233. eCollection 2024.

Abstract

Resting-state functional connectivity (RSFC) is widely used to predict phenotypic traits in individuals. Large sample sizes can significantly improve prediction accuracies. However, for studies of certain clinical populations or focused neuroscience inquiries, small-scale datasets often remain a necessity. We have previously proposed a "meta-matching" approach to translate prediction models from large datasets to predict new phenotypes in small datasets. We demonstrated a large improvement over classical kernel ridge regression (KRR) when translating models from a single source dataset (UK Biobank) to the Human Connectome Project Young Adults (HCP-YA) dataset. In the current study, we propose two meta-matching variants ("meta-matching with dataset stacking" and "multilayer meta-matching") to translate models from multiple source datasets across disparate sample sizes to predict new phenotypes in small target datasets. We evaluate both approaches by translating models trained from five source datasets (with sample sizes ranging from 862 participants to 36,834 participants) to predict phenotypes in the HCP-YA and HCP-Aging datasets. We find that multilayer meta-matching modestly outperforms meta-matching with dataset stacking. Both meta-matching variants perform better than the original "meta-matching with stacking" approach trained only on the UK Biobank. All meta-matching variants outperform classical KRR and transfer learning by a large margin. In fact, KRR is better than classical transfer learning when less than 50 participants are available for finetuning, suggesting the difficulty of classical transfer learning in the very small sample regime. The multilayer meta-matching model is publicly available athttps://github.com/ThomasYeoLab/Meta_matching_models/tree/main/rs-fMRI/v2.0.

摘要

静息态功能连接性(RSFC)被广泛用于预测个体的表型特征。大样本量可以显著提高预测准确性。然而,对于某些临床人群的研究或专注的神经科学探究,小规模数据集往往仍然是必要的。我们之前提出了一种“元匹配”方法,将预测模型从大型数据集转换过来,以预测小型数据集中的新表型。当将模型从单个源数据集(英国生物银行)转换到人类连接组计划青年成年人(HCP-YA)数据集时,我们证明了相对于经典核岭回归(KRR)有很大的改进。在当前研究中,我们提出了两种元匹配变体(“带数据集堆叠的元匹配”和“多层元匹配”),将模型从多个不同样本量的源数据集转换过来,以预测小型目标数据集中的新表型。我们通过将从五个源数据集(样本量从86名参与者到36834名参与者不等)训练的模型进行转换,来评估这两种方法,以预测HCP-YA和HCP-衰老数据集中的表型。我们发现多层元匹配略优于带数据集堆叠的元匹配。两种元匹配变体都比仅在英国生物银行上训练的原始“带堆叠的元匹配”方法表现更好。所有元匹配变体都比经典KRR和迁移学习有大幅优势。事实上,当可供微调的参与者少于50人时,KRR比经典迁移学习更好,这表明在非常小的样本情况下经典迁移学习的困难。多层元匹配模型可在https://github.com/ThomasYeoLab/Meta_matching_models/tree/main/rs-fMRI/v2.0上公开获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd1e/12272238/d79839b28b52/imag_a_00233_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验