Suppr超能文献

SeriesSleepNet:一种用于自动睡眠阶段评分的具有部分数据增强功能的脑电图时间序列模型。

SeriesSleepNet: an EEG time series model with partial data augmentation for automatic sleep stage scoring.

作者信息

Lee Minji, Kwak Heon-Gyu, Kim Hyeong-Jin, Won Dong-Ok, Lee Seong-Whan

机构信息

Department of Biomedical Software Engineering, The Catholic University of Korea, Bucheon, Republic of Korea.

Department of Artificial Intelligence, Korea University, Seoul, Republic of Korea.

出版信息

Front Physiol. 2023 Aug 28;14:1188678. doi: 10.3389/fphys.2023.1188678. eCollection 2023.

Abstract

We propose an automatic sleep stage scoring model, referred to as SeriesSleepNet, based on convolutional neural network (CNN) and bidirectional long short-term memory (bi-LSTM) with partial data augmentation. We used single-channel raw electroencephalography signals for automatic sleep stage scoring. Our framework was focused on time series information, so we applied partial data augmentation to learn the connected time information in small series. In specific, the CNN module learns the time information of one epoch (intra-epoch) whereas the bi-LSTM trains the sequential information between the adjacent epochs (inter-epoch). Note that the input of the bi-LSTM is the augmented CNN output. Moreover, the proposed loss function was used to fine-tune the model by providing additional weights. To validate the proposed framework, we conducted two experiments using the Sleep-EDF and SHHS datasets. The results achieved an overall accuracy of 0.87 and 0.84 and overall F1-score of 0.80 and 0.78 and kappa value of 0.81 and 0.78 for five-class classification, respectively. We showed that the SeriesSleepNet was superior to the baselines based on each component in the proposed framework. Our architecture also outperformed the state-of-the-art methods with overall F1-score, accuracy, and kappa value. Our framework could provide information on sleep disorders or quality of sleep to automatically classify sleep stages with high performance.

摘要

我们提出了一种基于卷积神经网络(CNN)和双向长短期记忆网络(bi-LSTM)并采用部分数据增强技术的自动睡眠阶段评分模型,称为SeriesSleepNet。我们使用单通道原始脑电图信号进行自动睡眠阶段评分。我们的框架专注于时间序列信息,因此我们应用部分数据增强来学习小序列中的连续时间信息。具体来说,CNN模块学习一个时段(时段内)的时间信息,而bi-LSTM训练相邻时段(时段间)之间的顺序信息。请注意,bi-LSTM的输入是增强后的CNN输出。此外,所提出的损失函数用于通过提供额外权重来微调模型。为了验证所提出的框架,我们使用Sleep-EDF和SHHS数据集进行了两项实验。对于五类分类,结果分别实现了0.87和0.84的总体准确率、0.80和0.78的总体F1分数以及0.81和0.78的kappa值。我们表明,SeriesSleepNet在所提出框架中的每个组件方面都优于基线。我们的架构在总体F1分数、准确率和kappa值方面也优于现有技术方法。我们的框架可以提供有关睡眠障碍或睡眠质量的信息,以高性能自动分类睡眠阶段。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f99e/10494443/be47a4e12b50/fphys-14-1188678-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验