Zhang Di, She Yichong, Sun Jinbo, Cui Yapeng, Yang Xuejuan, Zeng Xiao, Qin Wei
Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, People's Republic of China.
Intelligent Non-Invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, People's Republic of China.
Nat Sci Sleep. 2024 Jul 1;16:879-896. doi: 10.2147/NSS.S463495. eCollection 2024.
This study aims to improve brain age estimation by developing a novel deep learning model utilizing overnight electroencephalography (EEG) data.
We address limitations in current brain age prediction methods by proposing a model trained and evaluated on multiple cohort data, covering a broad age range. The model employs a one-dimensional Swin Transformer to efficiently extract complex patterns from sleep EEG signals and a convolutional neural network with attentional mechanisms to summarize sleep structural features. A multi-flow learning-based framework attentively merges these two features, employing sleep structural information to direct and augment the EEG features. A post-prediction model is designed to integrate the age-related features throughout the night. Furthermore, we propose a DecadeCE loss function to address the problem of an uneven age distribution.
We utilized 18,767 polysomnograms (PSGs) from 13,616 subjects to develop and evaluate the proposed model. The model achieves a mean absolute error (MAE) of 4.19 and a correlation of 0.97 on the mixed-cohort test set, and an MAE of 6.18 years and a correlation of 0.78 on an independent test set. Our brain age estimation work reduced the error by more than 1 year compared to other studies that also used EEG, achieving the level of neuroimaging. The estimated brain age index demonstrated longitudinal sensitivity and exhibited a significant increase of 1.27 years in individuals with psychiatric or neurological disorders relative to healthy individuals.
The multi-flow deep learning model proposed in this study, based on overnight EEG, represents a more accurate approach for estimating brain age. The utilization of overnight sleep EEG for the prediction of brain age is both cost-effective and adept at capturing dynamic changes. These findings demonstrate the potential of EEG in predicting brain age, presenting a noninvasive and accessible method for assessing brain aging.
本研究旨在通过开发一种利用夜间脑电图(EEG)数据的新型深度学习模型来改进脑龄估计。
我们通过提出一种在多个队列数据上进行训练和评估的模型来解决当前脑龄预测方法中的局限性,这些数据涵盖了广泛的年龄范围。该模型采用一维Swin Transformer从睡眠EEG信号中有效提取复杂模式,并采用具有注意力机制的卷积神经网络来总结睡眠结构特征。基于多流学习的框架精心融合这两种特征,并利用睡眠结构信息来指导和增强EEG特征。设计了一个预测后模型来整合整夜与年龄相关的特征。此外,我们提出了一种十年CE损失函数来解决年龄分布不均的问题。
我们利用来自13616名受试者的18767份多导睡眠图(PSG)来开发和评估所提出的模型。该模型在混合队列测试集上的平均绝对误差(MAE)为4.19,相关性为0.97,在独立测试集上的MAE为6.18岁,相关性为0.78。与其他也使用EEG的研究相比,我们的脑龄估计工作将误差降低了1年以上,达到了神经影像学的水平。估计的脑龄指数显示出纵向敏感性,并在患有精神或神经疾病的个体中相对于健康个体显著增加了1.27岁。
本研究中基于夜间EEG提出的多流深度学习模型是一种更准确的脑龄估计方法。利用夜间睡眠EEG预测脑龄既具有成本效益,又善于捕捉动态变化。这些发现证明了EEG在预测脑龄方面的潜力,为评估脑老化提供了一种非侵入性且易于获得的方法。