Suppr超能文献

利用深度学习和手部X光图像进行骨龄估计。

Bone age estimation using deep learning and hand X-ray images.

作者信息

Lee Jang Hyung, Kim Young Jae, Kim Kwang Gi

机构信息

Department of Biomedical Engineering, School of Medicine, Gachon University, 410-769, Inchon, 21565 Korea.

出版信息

Biomed Eng Lett. 2020 Mar 11;10(3):323-331. doi: 10.1007/s13534-020-00151-y. eCollection 2020 Aug.

Abstract

Bones during growth period undergo substantial changes in shape and size. X-ray imaging has been routinely used for bone growth diagnosis purpose. Hand has been the part of choice for X-ray imaging due to its high bone parts count and relatively low radiation requirement. Traditionally, bone age estimation has been performed by referencing atlases of images of hand bone regions where aging-related metamorphoses are most conspicuous. Tanner and Whitehouse' and Greulich and Pyle's are some well known ones. The process entails manual comparison of subject's hand region images against a set of corresponding images in the atlases. It is desired to estimate bone age from hand images in an automated manner, which would facilitate more efficient estimation in terms of time and labor cost and enables quantitative and objective assessments. Deep learning method has proved to be a viable approach in a number of application domains. It is also gaining wider grounds in medical image analysis. A cascaded structure of layers can be trained to mimic the image-based cognitive and inference processes of human and other higher organisms. We employed a set of well known deep learning network architectures. In the current study, 3000 images were manually curated to mark feature points on hands. They were used as reference points in removing unnecessary image regions and to retain regions of interest (ROI) relevant to age estimation. Different ROI's were defined and used-that of rather small area mostly made up of carpal and metacarpal bones and that includes most of phalanges in addition. Irrelevant intensity variation across cropped images was minimized by applying histogram equalization. In consideration of the established gender difference in growth rates, separate gender models were built. Certain age range image data are far scarcer and exhibit rather large excursion in morphology from other age ranges-e.g. infancy and very early childhood. Many studies excluded them and addressed only elder subjects in later developmental stages. Considering infant age group's diagnosis demand is just as valid as elder groups', we included entire age ranges for our study. A number of different deep learning architectures were trained with varying region of interest definitions. Smallest mean absolute difference error was 8.890 months for a test set of 400 images. This study was preliminary, and in the future, we plan to investigate alternative approaches not taken in the present study.

摘要

生长时期的骨骼在形状和大小上会经历显著变化。X射线成像一直被常规用于骨骼生长诊断。由于手部骨骼部位数量多且辐射要求相对较低,手部一直是X射线成像的首选部位。传统上,骨龄估计是通过参考手部骨骼区域图像图谱来进行的,在这些图谱中与年龄相关的变形最为明显。坦纳和怀特豪斯以及格吕利希和派尔的图谱是一些著名的图谱。这个过程需要将受试者的手部区域图像与图谱中的一组相应图像进行人工比较。人们希望以自动化方式从手部图像中估计骨龄,这将在时间和劳动力成本方面促进更高效的估计,并实现定量和客观的评估。深度学习方法已被证明在许多应用领域是一种可行的方法。它在医学图像分析中也越来越受到广泛应用。可以训练一种层的级联结构来模仿人类和其他高等生物基于图像的认知和推理过程。我们采用了一组著名的深度学习网络架构。在当前研究中,人工挑选了3000张图像来标记手部的特征点。它们被用作去除不必要图像区域的参考点,并保留与年龄估计相关的感兴趣区域(ROI)。定义并使用了不同的ROI——一个面积相当小的ROI,主要由腕骨和掌骨组成,另一个ROI除了包括大部分指骨外还包括腕骨和掌骨。通过应用直方图均衡化,裁剪后图像中无关的强度变化被最小化。考虑到已确定的生长速度方面的性别差异,构建了单独的性别模型。某些年龄范围的图像数据非常稀少,并且在形态上与其他年龄范围有很大差异——例如婴儿期和幼儿早期。许多研究将它们排除在外,只研究后期发育阶段的年长受试者。考虑到婴儿年龄组的诊断需求与年长组的需求同样有效,我们的研究纳入了所有年龄范围。使用不同的感兴趣区域定义对多种不同的深度学习架构进行了训练。对于一个400张图像的测试集,最小平均绝对差误差为8.890个月。这项研究是初步的,未来我们计划研究本研究中未采用的替代方法。

相似文献

1
Bone age estimation using deep learning and hand X-ray images.利用深度学习和手部X光图像进行骨龄估计。
Biomed Eng Lett. 2020 Mar 11;10(3):323-331. doi: 10.1007/s13534-020-00151-y. eCollection 2020 Aug.
2
Applying Deep Learning in Medical Images: The Case of Bone Age Estimation.深度学习在医学图像中的应用:骨龄估计案例
Healthc Inform Res. 2018 Jan;24(1):86-92. doi: 10.4258/hir.2018.24.1.86. Epub 2018 Jan 31.

引用本文的文献

8
Super-resolution techniques for biomedical applications and challenges.用于生物医学应用的超分辨率技术及挑战。
Biomed Eng Lett. 2024 Mar 19;14(3):465-496. doi: 10.1007/s13534-024-00365-4. eCollection 2024 May.

本文引用的文献

6
Bone age in children of diverse ethnicity.不同种族儿童的骨龄。
AJR Am J Roentgenol. 1996 Dec;167(6):1395-8. doi: 10.2214/ajr.167.6.8956565.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验