Suppr超能文献

基于经胸生物阻抗和心率变异性的机器学习模型用于肺液积聚检测:前瞻性临床研究

Machine Learning Model Based on Transthoracic Bioimpedance and Heart Rate Variability for Lung Fluid Accumulation Detection: Prospective Clinical Study.

作者信息

Reljin Natasa, Posada-Quintero Hugo F, Eaton-Robb Caitlin, Binici Sophia, Ensom Emily, Ding Eric, Hayes Anna, Riistama Jarno, Darling Chad, McManus David, Chon Ki H

机构信息

Department of Biomedical Engineering, University of Connecticut, Mansfield, CT, United States.

Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States.

出版信息

JMIR Med Inform. 2020 Aug 27;8(8):e18715. doi: 10.2196/18715.

Abstract

BACKGROUND

Accumulation of excess body fluid and autonomic dysregulation are clinically important characteristics of acute decompensated heart failure. We hypothesized that transthoracic bioimpedance, a noninvasive, simple method for measuring fluid retention in lungs, and heart rate variability, an assessment of autonomic function, can be used for detection of fluid accumulation in patients with acute decompensated heart failure.

OBJECTIVE

We aimed to evaluate the performance of transthoracic bioimpedance and heart rate variability parameters obtained using a fluid accumulation vest with carbon black-polydimethylsiloxane dry electrodes in a prospective clinical study (System for Heart Failure Identification Using an External Lung Fluid Device; SHIELD).

METHODS

We computed 15 parameters: 8 were calculated from the model to fit Cole-Cole plots from transthoracic bioimpedance measurements (extracellular, intracellular, intracellular-extracellular difference, and intracellular-extracellular parallel circuit resistances as well as fitting error, resonance frequency, tissue heterogeneity, and cellular membrane capacitance), and 7 were based on linear (mean heart rate, low-frequency components of heart rate variability, high-frequency components of heart rate variability, normalized low-frequency components of heart rate variability, normalized high-frequency components of heart rate variability) and nonlinear (principal dynamic mode index of sympathetic function, and principal dynamic mode index of parasympathetic function) analysis of heart rate variability. We compared the values of these parameters between 3 participant data sets: control (n=32, patients who did not have heart failure), baseline (n=23, patients with acute decompensated heart failure taken at the time of admittance to the hospital), and discharge (n=17, patients with acute decompensated heart failure taken at the time of discharge from hospital). We used several machine learning approaches to classify participants with fluid accumulation (baseline) and without fluid accumulation (control and discharge), termed with fluid and without fluid groups, respectively.

RESULTS

Among the 15 parameters, 3 transthoracic bioimpedance (extracellular resistance, R; difference in extracellular-intracellular resistance, R - R, and tissue heterogeneity, α) and 3 heart rate variability (high-frequency, normalized low-frequency, and normalized high-frequency components) parameters were found to be the most discriminatory between groups (patients with and patients without heart failure). R and R - R had significantly lower values for patients with heart failure than for those without heart failure (R: P=.006; R - R: P=.001), indicating that a higher volume of fluids accumulated in the lungs of patients with heart failure. A cubic support vector machine model using the 5 parameters achieved an accuracy of 92% for with fluid and without fluid group classification. The transthoracic bioimpedance parameters were related to intra- and extracellular fluid, whereas the heart rate variability parameters were mostly related to sympathetic activation.

CONCLUSIONS

This is useful, for instance, for an in-home diagnostic wearable to detect fluid accumulation. Results suggest that fluid accumulation, and subsequently acute decompensated heart failure detection, could be performed using transthoracic bioimpedance and heart rate variability measurements acquired with a wearable vest.

摘要

背景

体内过多体液的蓄积和自主神经功能失调是急性失代偿性心力衰竭的重要临床特征。我们推测,经胸生物阻抗(一种用于测量肺内液体潴留的无创、简单方法)和心率变异性(一种自主神经功能评估指标)可用于检测急性失代偿性心力衰竭患者的液体蓄积情况。

目的

在一项前瞻性临床研究(使用外部肺液装置的心力衰竭识别系统;SHIELD)中,我们旨在评估使用带有炭黑 - 聚二甲基硅氧烷干电极的液体蓄积背心获得的经胸生物阻抗和心率变异性参数的性能。

方法

我们计算了15个参数:8个参数是根据经胸生物阻抗测量结果拟合科尔 - 科尔图的模型计算得出(细胞外、细胞内、细胞内 - 细胞外差异以及细胞内 - 细胞外并联电路电阻,以及拟合误差、共振频率、组织异质性和细胞膜电容),7个参数基于心率变异性的线性(平均心率、心率变异性的低频成分、心率变异性的高频成分、心率变异性的归一化低频成分、心率变异性的归一化高频成分)和非线性(交感神经功能的主要动态模式指数和副交感神经功能的主要动态模式指数)分析。我们比较了这15个参数在3组参与者数据中的值:对照组(n = 32,无心力衰竭患者)、基线组(n = 23,入院时的急性失代偿性心力衰竭患者)和出院组(n = 17,出院时的急性失代偿性心力衰竭患者)。我们使用了几种机器学习方法对有液体蓄积(基线组)和无液体蓄积(对照组和出院组)的参与者进行分类,分别称为有液体组和无液体组。

结果

在这15个参数中,发现3个经胸生物阻抗参数(细胞外电阻,R;细胞外 - 细胞内电阻差异,R - R,以及组织异质性,α)和3个心率变异性参数(高频、归一化低频和归一化高频成分)在两组(有心力衰竭患者和无心力衰竭患者)之间具有最大的区分度。心力衰竭患者的R和R - R值显著低于无心力衰竭患者(R:P = 0.006;R - R:P = 0.001),这表明心力衰竭患者肺内蓄积的液体量更多。使用这5个参数的立方支持向量机模型在有液体组和无液体组分类中的准确率达到了92%。经胸生物阻抗参数与细胞内和细胞外液有关,而心率变异性参数主要与交感神经激活有关。

结论

例如,这对于家庭诊断可穿戴设备检测液体蓄积很有用。结果表明,使用可穿戴背心获取的经胸生物阻抗和心率变异性测量结果可用于检测液体蓄积,进而检测急性失代偿性心力衰竭。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验