Suppr超能文献

基于快速传播疫情的延迟动态模型得出的新近似值及政策启示。

New approximations, and policy implications, from a delayed dynamic model of a fast pandemic.

作者信息

Vyasarayani C P, Chatterjee Anindya

机构信息

Mechanical and Aerospace Engineering, Indian Institute of Technology Hyderabad, Sangareddy, 502285, India.

Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India.

出版信息

Physica D. 2020 Dec 15;414:132701. doi: 10.1016/j.physd.2020.132701. Epub 2020 Aug 25.

Abstract

We study an SEIQR (Susceptible-Exposed-Infectious-Quarantined-Recovered) model due to Young et al. (2019) for an infectious disease, with time delays for latency and an asymptomatic phase. For fast pandemics where nobody has prior immunity and everyone has immunity after recovery, the SEIQR model decouples into two nonlinear delay differential equations (DDEs) with five parameters. One parameter is set to unity by scaling time. The simple subcase of perfect quarantining and zero self-recovery before quarantine, with two free parameters, is examined first. The method of multiple scales yields a hyperbolic tangent solution; and a long-wave (short delay) approximation yields a first order ordinary differential equation (ODE). With imperfect quarantining and nonzero self-recovery, the long-wave approximation is a second order ODE. These three approximations each capture the full outbreak, from infinitesimal initiation to final saturation. Low-dimensional dynamics in the DDEs is demonstrated using a six state non-delayed reduced order model obtained by Galerkin projection. Numerical solutions from the reduced order model match the DDE over a range of parameter choices and initial conditions. Finally, stability analysis and numerics show how a well executed temporary phase of social distancing can reduce the total number of people affected. The reduction can be by as much as half for a weak pandemic, and is smaller but still substantial for stronger pandemics. An explicit formula for the greatest possible reduction is given.

摘要

我们研究了由杨等人(2019年)提出的针对一种传染病的SEIQR(易感-暴露-感染-隔离-康复)模型,该模型存在潜伏期和无症状期的时间延迟。对于快速传播的大流行病,在没有人具有先前免疫力且每个人康复后都具有免疫力的情况下,SEIQR模型分解为两个具有五个参数的非线性延迟微分方程(DDE)。通过对时间进行缩放,将一个参数设为1。首先研究了完全隔离且隔离前自我康复为零的简单子情况,该情况有两个自由参数。多尺度方法产生了一个双曲正切解;长波(短延迟)近似产生了一个一阶常微分方程(ODE)。在隔离不完善且自我康复不为零的情况下,长波近似是一个二阶ODE。这三种近似都捕捉了从微小爆发到最终饱和的整个疫情过程。使用通过伽辽金投影得到的六状态无延迟降阶模型展示了DDE中的低维动力学。降阶模型的数值解在一系列参数选择和初始条件下与DDE相匹配。最后,稳定性分析和数值结果表明,执行良好的临时社交距离措施可以如何减少受影响的总人数。对于轻度大流行,减少幅度可达一半,而对于强度更大的大流行,减少幅度较小但仍然可观。给出了最大可能减少量的明确公式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e185/7446701/13a94745ece6/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验