Department of Oncology, Johns Hopkins University, Baltimore, Maryland, USA.
Department of Biostatistics, Johns Hopkins University, Baltimore, Maryland, USA.
Lancet Digit Health. 2019 Nov;1(7):e353-e362. doi: 10.1016/S2589-7500(19)30159-1. Epub 2019 Oct 17.
Current lung cancer screening guidelines use mean diameter, volume or density of the largest lung nodule in the prior computed tomography (CT) or appearance of new nodule to determine the timing of the next CT. We aimed at developing a more accurate screening protocol by estimating the 3-year lung cancer risk after two screening CTs using deep machine learning (ML) of radiologist CT reading and other universally available clinical information.
A deep machine learning (ML) algorithm was developed from 25,097 participants who had received at least two CT screenings up to two years apart in the National Lung Screening Trial. Double-blinded validation was performed using 2,294 participants from the Pan-Canadian Early Detection of Lung Cancer Study (PanCan). Performance of ML score to inform lung cancer incidence was compared with Lung-RADS and volume doubling time using time-dependent ROC analysis. Exploratory analysis was performed to identify individuals with aggressive cancers and higher mortality rates.
In the PanCan validation cohort, ML showed excellent discrimination with a 1-, 2- and 3-year time-dependent AUC values for cancer diagnosis of 0·968±0·013, 0·946±0·013 and 0·899±0·017. Although high ML score cohort included only 10% of the PanCan sample, it identified 94%, 85%, and 71% of incident and interval lung cancers diagnosed within 1, 2, and 3 years, respectively, after the second screening CT. Furthermore, individuals with high ML score had significantly higher mortality rates (HR=16·07, p<0·001) compared to those with lower risk.
ML tool that recognizes patterns in both temporal and spatial changes as well as synergy among changes in nodule and non-nodule features may be used to accurately guide clinical management after the next scheduled repeat screening CT.
目前的肺癌筛查指南使用最大肺结节在先前 CT 中的平均直径、体积或密度,或新结节的出现来确定下一次 CT 的时间。我们旨在通过使用放射科医师 CT 读数和其他普遍可用的临床信息的深度学习(ML)来估计两次筛查 CT 后 3 年的肺癌风险,从而制定更准确的筛查方案。
从在国家肺癌筛查试验中至少接受过两次相隔两年以上的 CT 筛查的 25097 名参与者中开发了一种深度学习(ML)算法。使用来自 Pan-Canadian Early Detection of Lung Cancer Study(PanCan)的 2294 名参与者进行了双盲验证。使用时间依赖性 ROC 分析比较了 ML 评分对肺癌发生率的影响与 Lung-RADS 和体积倍增时间。进行了探索性分析以确定具有侵袭性癌症和更高死亡率的个体。
在 PanCan 验证队列中,ML 表现出出色的区分度,1 年、2 年和 3 年时间依赖性 AUC 值用于癌症诊断分别为 0.968±0.013、0.946±0.013 和 0.899±0.017。尽管高 ML 评分队列仅包含 PanCan 样本的 10%,但它分别识别出了在第二次筛查 CT 后 1 年、2 年和 3 年内诊断的 94%、85%和 71%的新发和间隔期肺癌。此外,高 ML 评分个体的死亡率明显更高(HR=16.07,p<0.001)。
能够识别结节和非结节特征的时空变化模式以及变化之间协同作用的 ML 工具,可能有助于在下次预定的重复筛查 CT 后准确指导临床管理。