Suppr超能文献

用于单细胞细胞周期转变功能基因组研究的方法和传感器。

Methods and sensors for functional genomic studies of cell-cycle transitions in single cells.

机构信息

Department of Biopharmaceutical Sciences, School of Pharmacy and Health Sciences, Keck Graduate Institute, Claremont, California.

Keck Science Department, Pitzer College, Claremont, California.

出版信息

Physiol Genomics. 2020 Oct 1;52(10):468-477. doi: 10.1152/physiolgenomics.00065.2020. Epub 2020 Aug 31.

Abstract

Much of our understanding of the regulatory mechanisms governing the cell cycle in mammals has relied heavily on methods that measure the aggregate state of a population of cells. While instrumental in shaping our current understanding of cell proliferation, these approaches mask the genetic signatures of rare subpopulations such as quiescent (G) and very slowly dividing (SD) cells. Results described in this study and those of others using single-cell analysis reveal that even in clonally derived immortalized cancer cells, ∼1-5% of cells can exhibit G and SD phenotypes. Therefore to enable the study of these rare cell phenotypes we established an integrated molecular, computational, and imaging approach to track, isolate, and genetically perturb single cells as they proliferate. A genetically encoded cell-cycle reporter (K67-FUCCI) was used to track single cells as they traversed the cell cycle. A set of R-scripts were written to quantify K67-FUCCI over time. To enable the further study G and SD phenotypes, we retrofitted a live cell imaging system with a micromanipulator to enable single-cell targeting for functional validation studies. Single-cell analysis revealed HT1080 and MCF7 cells had a doubling time of ∼24 and ∼48 h, respectively, with high duration variability in G and G phases. Direct single-cell microinjection of mRNA encoding (GFP) achieves detectable GFP fluorescence within ∼5 h in both cell types. These findings coupled with the possibility of targeting several hundreds of single cells improves throughput and sensitivity over conventional methods to study rare cell subpopulations.

摘要

我们对哺乳动物细胞周期调控机制的理解在很大程度上依赖于测量细胞群体综合状态的方法。虽然这些方法在塑造我们对细胞增殖的现有理解方面发挥了重要作用,但它们掩盖了稀有亚群(如静止(G)和非常缓慢分裂(SD)细胞)的遗传特征。本研究和其他使用单细胞分析的研究结果表明,即使在克隆衍生的永生化癌细胞中,也有约 1-5%的细胞可以表现出 G 和 SD 表型。因此,为了能够研究这些罕见的细胞表型,我们建立了一种集成的分子、计算和成像方法,以跟踪、分离和遗传干扰增殖过程中的单个细胞。使用遗传编码的细胞周期报告基因(K67-FUCCI)来跟踪单个细胞在细胞周期中的变化。编写了一组 R 脚本来随时间量化 K67-FUCCI。为了进一步研究 G 和 SD 表型,我们对活细胞成像系统进行了改装,增加了一个微操纵器,以实现单细胞靶向,用于功能验证研究。单细胞分析显示 HT1080 和 MCF7 细胞的倍增时间分别约为 24 和 48 小时,G 期和 G1 期的持续时间变化很大。在这两种细胞类型中,直接对单个细胞进行 GFP 编码 mRNA 的微注射,在大约 5 小时内即可检测到 GFP 荧光。这些发现以及靶向数百个单个细胞的可能性,提高了研究稀有细胞亚群的通量和灵敏度,优于传统方法。

相似文献

1
Methods and sensors for functional genomic studies of cell-cycle transitions in single cells.
Physiol Genomics. 2020 Oct 1;52(10):468-477. doi: 10.1152/physiolgenomics.00065.2020. Epub 2020 Aug 31.
2
Ki67 is a Graded Rather than a Binary Marker of Proliferation versus Quiescence.
Cell Rep. 2018 Jul 31;24(5):1105-1112.e5. doi: 10.1016/j.celrep.2018.06.110.
3
Genetically Encoded Tools for Optical Dissection of the Mammalian Cell Cycle.
Mol Cell. 2017 Nov 2;68(3):626-640.e5. doi: 10.1016/j.molcel.2017.10.001. Epub 2017 Oct 26.
4
Wnt Signaling Regulates Airway Epithelial Stem Cells in Adult Murine Submucosal Glands.
Stem Cells. 2016 Nov;34(11):2758-2771. doi: 10.1002/stem.2443. Epub 2016 Jul 11.
5
Accurate delineation of cell cycle phase transitions in living cells with PIP-FUCCI.
Cell Cycle. 2018;17(21-22):2496-2516. doi: 10.1080/15384101.2018.1547001.
6
FUCCI Reporter Gene-Based Cell Cycle Analysis.
Methods Mol Biol. 2023;2644:371-385. doi: 10.1007/978-1-0716-3052-5_24.
7
Cell-Cycle Regulation Accounts for Variability in Ki-67 Expression Levels.
Cancer Res. 2017 May 15;77(10):2722-2734. doi: 10.1158/0008-5472.CAN-16-0707. Epub 2017 Mar 10.
8
Tracking the Cyclin B1-GFP Sensor to Profile the Pattern of Mitosis Versus Mitotic Bypass.
Methods Mol Biol. 2016;1342:279-85. doi: 10.1007/978-1-4939-2957-3_17.

引用本文的文献

1
Molecular Spies in Action: Genetically Encoded Fluorescent Biosensors Light up Cellular Signals.
Chem Rev. 2024 Nov 27;124(22):12573-12660. doi: 10.1021/acs.chemrev.4c00293. Epub 2024 Nov 13.
2
Nuclear morphology predicts cell survival to cisplatin chemotherapy.
Neoplasia. 2023 Aug;42:100906. doi: 10.1016/j.neo.2023.100906. Epub 2023 May 10.
3
Disruption of Toxoplasma gondii-Induced Host Cell DNA Replication Is Dependent on Contact Inhibition and Host Cell Type.
mSphere. 2022 Jun 29;7(3):e0016022. doi: 10.1128/msphere.00160-22. Epub 2022 May 19.
4
Monitoring Spontaneous Quiescence and Asynchronous Proliferation-Quiescence Decisions in Prostate Cancer Cells.
Front Cell Dev Biol. 2021 Dec 10;9:728663. doi: 10.3389/fcell.2021.728663. eCollection 2021.

本文引用的文献

1
Transit amplifying cells coordinate mouse incisor mesenchymal stem cell activation.
Nat Commun. 2019 Aug 9;10(1):3596. doi: 10.1038/s41467-019-11611-0.
2
Prominin-1 controls stem cell activation by orchestrating ciliary dynamics.
EMBO J. 2019 Jan 15;38(2). doi: 10.15252/embj.201899845. Epub 2018 Dec 6.
3
Irreversible APC(Cdh1) Inactivation Underlies the Point of No Return for Cell-Cycle Entry.
Cell. 2016 Jun 30;166(1):167-80. doi: 10.1016/j.cell.2016.05.077.
4
Cancer stem cells and chemoresistance: The smartest survives the raid.
Pharmacol Ther. 2016 Apr;160:145-58. doi: 10.1016/j.pharmthera.2016.02.008. Epub 2016 Feb 17.
5
Senescence from G2 arrest, revisited.
Cell Cycle. 2015;14(3):297-304. doi: 10.1080/15384101.2014.1000134.
6
mTORC1 controls the adaptive transition of quiescent stem cells from G0 to G(Alert).
Nature. 2014 Jun 19;510(7505):393-6. doi: 10.1038/nature13255. Epub 2014 May 25.
8
The proliferation-quiescence decision is controlled by a bifurcation in CDK2 activity at mitotic exit.
Cell. 2013 Oct 10;155(2):369-83. doi: 10.1016/j.cell.2013.08.062. Epub 2013 Sep 26.
9
Molecular regulation of stem cell quiescence.
Nat Rev Mol Cell Biol. 2013 Jun;14(6):329-40. doi: 10.1038/nrm3591.
10
Classic "broken cell" techniques and newer live cell methods for cell cycle assessment.
Am J Physiol Cell Physiol. 2013 May 15;304(10):C927-38. doi: 10.1152/ajpcell.00006.2013. Epub 2013 Feb 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验