Department of Biopharmaceutical Sciences, School of Pharmacy and Health Sciences, Keck Graduate Institute, Claremont, California.
Keck Science Department, Pitzer College, Claremont, California.
Physiol Genomics. 2020 Oct 1;52(10):468-477. doi: 10.1152/physiolgenomics.00065.2020. Epub 2020 Aug 31.
Much of our understanding of the regulatory mechanisms governing the cell cycle in mammals has relied heavily on methods that measure the aggregate state of a population of cells. While instrumental in shaping our current understanding of cell proliferation, these approaches mask the genetic signatures of rare subpopulations such as quiescent (G) and very slowly dividing (SD) cells. Results described in this study and those of others using single-cell analysis reveal that even in clonally derived immortalized cancer cells, ∼1-5% of cells can exhibit G and SD phenotypes. Therefore to enable the study of these rare cell phenotypes we established an integrated molecular, computational, and imaging approach to track, isolate, and genetically perturb single cells as they proliferate. A genetically encoded cell-cycle reporter (K67-FUCCI) was used to track single cells as they traversed the cell cycle. A set of R-scripts were written to quantify K67-FUCCI over time. To enable the further study G and SD phenotypes, we retrofitted a live cell imaging system with a micromanipulator to enable single-cell targeting for functional validation studies. Single-cell analysis revealed HT1080 and MCF7 cells had a doubling time of ∼24 and ∼48 h, respectively, with high duration variability in G and G phases. Direct single-cell microinjection of mRNA encoding (GFP) achieves detectable GFP fluorescence within ∼5 h in both cell types. These findings coupled with the possibility of targeting several hundreds of single cells improves throughput and sensitivity over conventional methods to study rare cell subpopulations.
我们对哺乳动物细胞周期调控机制的理解在很大程度上依赖于测量细胞群体综合状态的方法。虽然这些方法在塑造我们对细胞增殖的现有理解方面发挥了重要作用,但它们掩盖了稀有亚群(如静止(G)和非常缓慢分裂(SD)细胞)的遗传特征。本研究和其他使用单细胞分析的研究结果表明,即使在克隆衍生的永生化癌细胞中,也有约 1-5%的细胞可以表现出 G 和 SD 表型。因此,为了能够研究这些罕见的细胞表型,我们建立了一种集成的分子、计算和成像方法,以跟踪、分离和遗传干扰增殖过程中的单个细胞。使用遗传编码的细胞周期报告基因(K67-FUCCI)来跟踪单个细胞在细胞周期中的变化。编写了一组 R 脚本来随时间量化 K67-FUCCI。为了进一步研究 G 和 SD 表型,我们对活细胞成像系统进行了改装,增加了一个微操纵器,以实现单细胞靶向,用于功能验证研究。单细胞分析显示 HT1080 和 MCF7 细胞的倍增时间分别约为 24 和 48 小时,G 期和 G1 期的持续时间变化很大。在这两种细胞类型中,直接对单个细胞进行 GFP 编码 mRNA 的微注射,在大约 5 小时内即可检测到 GFP 荧光。这些发现以及靶向数百个单个细胞的可能性,提高了研究稀有细胞亚群的通量和灵敏度,优于传统方法。