Ulrich Sebastian, Schäfer Cornelius
Chair of Bacteriology and Mycology, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstraße 13, 80539 Munich, Germany.
BÜCHI Labortechnik GmbH, Altendorfer Straße 3, 45127 Essen, Germany.
J Fungi (Basel). 2020 Sep 2;6(3):159. doi: 10.3390/jof6030159.
(.) had been linked to severe health problems in humans and animals, which occur after exposure to the toxic secondary metabolites of this mold. had been isolated from different environmental sources, ranging from culinary herbs and improperly stored fodder to damp building materials. To access the pathogenic potential of isolates, it is essential to analyze them under defined conditions that allow for the production of their toxic metabolites. All species are assumed to produce the immunosuppressive phenylspirodrimanes, but the highly cytotoxic macrocyclic trichothecenes are exclusively generated by the genotype S of . In this study, we have analyzed four genotype S strains initially isolated from three different habitats. We grew them on five commonly used media (malt-extract-agar, glucose-yeast-peptone-agar, potato-dextrose-agar, cellulose-agar, Sabouraud-dextrose-agar) to identify conditions that promote mycotoxin production. Using LC-MS/MS, we have quantified stachybotrylactam and all S-type specific macrocyclic trichothecenes (satratoxin G, H, F, roridin E, L-2, verrucarin J). All five media supported a comparable fungal growth and sporulation at 25 °C in the dark. The highest concentrations of macrocyclic trichothecenes were detected on potato-dextrose-agar or cellulose-agar. Malt-extract-agar let to an intermediate and glucose-yeast-peptone-agar and Sabouraud-dextrose-agar to a poor mycotoxin production. These data demonstrate that the mycotoxin production clearly depends on the composition of the respective medium. Our findings provide a starting point for further studies in order to identify individual components that either support or repress the production of mycotoxins in .
(某菌)已与人和动物的严重健康问题相关联,这些问题在接触该霉菌的有毒次生代谢产物后出现。(某菌)已从不同环境来源分离得到,范围从烹饪香草、储存不当的饲料到潮湿的建筑材料。为了评估分离株的致病潜力,在能使其产生有毒代谢产物的特定条件下对其进行分析至关重要。所有(某菌)物种都被认为会产生免疫抑制性苯基螺二氢吡喃,但具有高度细胞毒性的大环单端孢霉烯族毒素仅由(某菌)的S基因型产生。在本研究中,我们分析了最初从三个不同栖息地分离得到的四株S基因型菌株。我们将它们接种在五种常用培养基(麦芽提取物琼脂、葡萄糖酵母蛋白胨琼脂、马铃薯葡萄糖琼脂、纤维素琼脂、沙氏葡萄糖琼脂)上,以确定促进霉菌毒素产生的条件。使用液相色谱 - 串联质谱法,我们对葡萄穗霉毒素和所有S型特异性大环单端孢霉烯族毒素(蛇形毒素G、H、F、Roridin E、L - 2、疣孢菌素J)进行了定量。在25℃黑暗条件下,所有五种培养基都支持相当的真菌生长和孢子形成。在马铃薯葡萄糖琼脂或纤维素琼脂上检测到最高浓度的大环单端孢霉烯族毒素。麦芽提取物琼脂导致中等水平的霉菌毒素产生量,而葡萄糖酵母蛋白胨琼脂和沙氏葡萄糖琼脂导致较差的霉菌毒素产生量。这些数据表明,霉菌毒素的产生明显取决于各自培养基的组成成分。我们的研究结果为进一步研究提供了一个起点,以便确定支持或抑制(某菌)中霉菌毒素产生的单个成分。