文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

SI-ATRP 修饰磁性纳米粒子与 PHEMA 和叶酸的后聚合修饰用于肿瘤细胞的特异性靶向。

SI-ATRP Decoration of Magnetic Nanoparticles with PHEMA and Post-Polymerization Modification with Folic Acid for Tumor Cells' Specific Targeting.

机构信息

Centre of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania.

"Prof. Dr. Nicolae Oblu" Emergency Clinical Hospital, 2 Ateneului Street, 700309 Iasi, Romania.

出版信息

Int J Mol Sci. 2021 Dec 23;23(1):155. doi: 10.3390/ijms23010155.


DOI:10.3390/ijms23010155
PMID:35008582
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8745432/
Abstract

Targeted nanocarriers could reach new levels of drug delivery, bringing new tools for personalized medicine. It is known that cancer cells overexpress folate receptors on the cell surface compared to healthy cells, which could be used to create new nanocarriers with specific targeting moiety. In addition, magnetic nanoparticles can be guided under the influence of an external magnetic field in different areas of the body, allowing their precise localization. The main purpose of this paper was to decorate the surface of magnetic nanoparticles with poly(2-hydroxyethyl methacrylate) (PHEMA) by surface-initiated atomic transfer radical polymerization (SI-ATRP) followed by covalent bonding of folic acid to side groups of the polymer to create a high specificity magnetic nanocarrier with increased internalization capacity in tumor cells. The biocompatibility of the nanocarriers was demonstrated by testing them on the NHDF cell line and folate-dependent internalization capacity was tested on three tumor cell lines: MCF-7, HeLa and HepG2. It has also been shown that a higher concentration of folic acid covalently bound to the polymer leads to a higher internalization in tumor cells compared to healthy cells. Last but not least, magnetic resonance imaging was used to highlight the magnetic properties of the functionalized nanoparticles obtained.

摘要

靶向纳米载体可以达到药物输送的新水平,为个性化医疗带来新的工具。众所周知,与健康细胞相比,癌细胞在细胞表面过度表达叶酸受体,这可以用来创建具有特定靶向部分的新的纳米载体。此外,磁性纳米粒子可以在外磁场的影响下在体内的不同区域进行引导,从而实现其精确的定位。本文的主要目的是通过表面引发原子转移自由基聚合(SI-ATRP)在磁性纳米粒子表面修饰聚(2-羟乙基甲基丙烯酸酯)(PHEMA),然后将叶酸通过共价键结合到聚合物的侧基上,从而创建一种具有高特异性和增加内化能力的肿瘤细胞的磁性纳米载体。通过在 NHDF 细胞系上进行测试,证明了纳米载体的生物相容性,并且在三种肿瘤细胞系(MCF-7、HeLa 和 HepG2)上测试了叶酸依赖性内化能力。还表明,与健康细胞相比,与聚合物共价结合的更高浓度的叶酸导致更高的肿瘤细胞内化。最后但同样重要的是,使用磁共振成像来突出获得的功能化纳米粒子的磁性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/8745432/79b6b9357eee/ijms-23-00155-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/8745432/1179119d8a69/ijms-23-00155-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/8745432/c3b80aae2ab9/ijms-23-00155-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/8745432/893db8a95d90/ijms-23-00155-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/8745432/514b58e0b700/ijms-23-00155-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/8745432/59fe865998f3/ijms-23-00155-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/8745432/7a1e83709cc0/ijms-23-00155-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/8745432/7565cd26aca9/ijms-23-00155-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/8745432/a7aeb2e87ff1/ijms-23-00155-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/8745432/29877b073063/ijms-23-00155-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/8745432/e35a102a41ea/ijms-23-00155-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/8745432/4195991e6fcd/ijms-23-00155-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/8745432/5fcbefb50462/ijms-23-00155-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/8745432/6949bf25555f/ijms-23-00155-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/8745432/79b6b9357eee/ijms-23-00155-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/8745432/1179119d8a69/ijms-23-00155-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/8745432/c3b80aae2ab9/ijms-23-00155-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/8745432/893db8a95d90/ijms-23-00155-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/8745432/514b58e0b700/ijms-23-00155-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/8745432/59fe865998f3/ijms-23-00155-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/8745432/7a1e83709cc0/ijms-23-00155-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/8745432/7565cd26aca9/ijms-23-00155-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/8745432/a7aeb2e87ff1/ijms-23-00155-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/8745432/29877b073063/ijms-23-00155-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/8745432/e35a102a41ea/ijms-23-00155-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/8745432/4195991e6fcd/ijms-23-00155-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/8745432/5fcbefb50462/ijms-23-00155-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/8745432/6949bf25555f/ijms-23-00155-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faae/8745432/79b6b9357eee/ijms-23-00155-g013.jpg

相似文献

[1]
SI-ATRP Decoration of Magnetic Nanoparticles with PHEMA and Post-Polymerization Modification with Folic Acid for Tumor Cells' Specific Targeting.

Int J Mol Sci. 2021-12-23

[2]
Design and construction of multifunctional hyperbranched polymers coated magnetite nanoparticles for both targeting magnetic resonance imaging and cancer therapy.

J Colloid Interface Sci. 2017-3-15

[3]
Increased cellular uptake of lauryl gallate loaded in superparamagnetic poly(methyl methacrylate) nanoparticles due to surface modification with folic acid.

J Mater Sci Mater Med. 2016-12

[4]
Folic acid-decorated PEGylated magnetite nanoparticles as efficient drug carriers to tumor cells overexpressing folic acid receptor.

Int J Pharm. 2022-9-25

[5]
AS1411 aptamer and folic acid functionalized pH-responsive ATRP fabricated pPEGMA-PCL-pPEGMA polymeric nanoparticles for targeted drug delivery in cancer therapy.

Biomacromolecules. 2014-4-15

[6]
Synthesis of Poly(2-Hydroxyethyl Methacrylate) (PHEMA)-Based Superparamagnetic Nanoparticles for Biomedical and Pharmaceutical Applications.

Methods Mol Biol. 2020

[7]
Folate-molecular encapsulator-tethered biocompatible polymer grafted with magnetic nanoparticles for augmented drug delivery.

Artif Cells Nanomed Biotechnol. 2018-5-4

[8]
Fabrication of contrast agents for magnetic resonance imaging from polymer-brush-afforded iron oxide magnetic nanoparticles prepared by surface-initiated living radical polymerization.

Biomacromolecules. 2013-9-4

[9]
Quantitative control of active targeting of nanocarriers to tumor cells through optimization of folate ligand density.

Biomaterials. 2014-6-16

[10]
Folate-modified poly(2-ethyl-2-oxazoline) as hydrophilic corona in polymeric micelles for enhanced intracellular doxorubicin delivery.

Int J Pharm. 2013-9-7

引用本文的文献

[1]
Solid-Phase Synthesized Copolymers for the Assembly of pH-Sensitive Micelles Suitable for Drug Delivery Applications.

Nanomaterials (Basel). 2022-5-24

本文引用的文献

[1]
Manganese-Doped N-Hydroxyphthalimide-Derived Carbon Dots-Theranostics Applications in Experimental Breast Cancer Models.

Pharmaceutics. 2021-11-22

[2]
Magnetic Characterization by Scanning Microscopy of Functionalized Iron Oxide Nanoparticles.

Nanomaterials (Basel). 2021-8-26

[3]
Development of Dextran-Coated Magnetic Nanoparticles Loaded with Protocatechuic Acid for Vascular Inflammation Therapy.

Pharmaceutics. 2021-9-7

[4]
Antibacterial Polysiloxane Polymers and Coatings for Cochlear Implants.

Molecules. 2021-8-12

[5]
Mechanisms of the Cytotoxic Effect of Selenium Nanoparticles in Different Human Cancer Cell Lines.

Int J Mol Sci. 2021-7-21

[6]
pHEMA: An Overview for Biomedical Applications.

Int J Mol Sci. 2021-6-15

[7]
Poly(ethylene-imine)-Functionalized Magnetite Nanoparticles Derivatized with Folic Acid: Heating and Targeting Properties.

Polymers (Basel). 2021-5-15

[8]
Small molecules in targeted cancer therapy: advances, challenges, and future perspectives.

Signal Transduct Target Ther. 2021-5-31

[9]
Self-Assembled Organic Nanomaterials for Drug Delivery, Bioimaging, and Cancer Therapy.

ACS Biomater Sci Eng. 2020-9-14

[10]
Cancer Statistics, 2021.

CA Cancer J Clin. 2021-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索